首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chemical shielding anisotropy tensors have been determined for all twenty-seven characteristic conformers of For-L-Val-NH2 using the GIAO-RHF formalism with the 6-31 + G* and TZ2P basis sets. The individual chemical shifts and their conformational averages have been compared to their experimental counterparts taken from the BioMagnetic Resonance Bank (BMRB). At the highest level of theory applied, for all nuclei but the amide proton, deviations between statistically averaged theoretical and experimental chemical shifts are as low as 1-3%. Correlated chemical shift plots of selected nuclei, as function of the respective phi, psi, chi1, and chi2 torsional angles, have been generated. On two-dimensional chemical shift-chemical shift plots, for example, 1H(NH)-15N(NH) and 15N(NH)-13Calpha, regions corresponding to major conformational clusters have been identified, providing a basis for the quantitative identification of conformers from NMR shift data. Experimental NMR resonances of nuclei of valine residues have been deduced from 18 selected proteins, resulting in 93 1Halpha-13Calpha chemical shift pairs. These experimental results have been compared to relevant ab initio values revealing remarkable correlation between the two sets of data. Correlations of 1Halpha and 13Calpha values with backbone conformational parameters (phi and psi) have also been found for all pairs (e.g. 1Halpha/phi and 13Calpha/phi) but 1Halpha/psi. Overall, the appealing idea of establishing backbone folding of proteins by employing chemical shift information alone, obtained from selected multiple-pulse NMR experiments (e.g. 2D-HSQC, 2D-HMQC, and 3D-HNCA), has received further support.  相似文献   

2.
G-matrix Fourier transform (GFT) NMR spectroscopy is presented for accurate and precise measurement of chemical shifts and nuclear spin-spin couplings correlated according to spin system. The new approach, named "J-GFT NMR", is based on a largely extended GFT NMR formalism and promises to have a broad impact on projection NMR spectroscopy. Specifically, constant-time J-GFT (6,2)D (HA-CA-CO)-N-HN was implemented for simultaneous measurement of five mutually correlated NMR parameters, that is, 15N backbone chemical shifts and the four one-bond spin-spin couplings 13Calpha-1Halpha, 13Calpha-13C', 15N-13C', and 15N-1HNu. The experiment was applied for measuring residual dipolar couplings (RDCs) in an 8 kDa protein Z-domain aligned with Pf1 phages. Comparison with RDC values extracted from conventional NMR experiments reveals that RDCs are measured with high precision and accuracy, which is attributable to the facts that (i) the use of constant time evolution ensures that signals do not broaden whenever multiple RDCs are jointly measured in a single dimension and (ii) RDCs are multiply encoded in the multiplets arising from the joint sampling. This corresponds to measuring the couplings multiple times in a statistically independent manner. A key feature of J-GFT NMR, i.e., the correlation of couplings according to spin systems without reference to sequential resonance assignments, promises to be particularly valuable for rapid identification of backbone conformation and classification of protein fold families on the basis of statistical analysis of dipolar couplings.  相似文献   

3.
Well-resolved and unambiguous through-bond correlations and NOE data are crucial for high-quality protein structure determination by NMR. In this context, we present here (4, 3)D reduced dimensionality (RD) experiments: H(CC)CONH TOCSY and NOESY HNCO--which instead of (15)N shifts exploit the linear combination of (15)N(i) and (13)C'(i-1) shifts (where i is a residue number) to resolve the through-bond (1)H-(1)H correlations and through-space (1)H-(1)H NOEs. The strategy makes use of the fact that (15)N and (13)C' chemical shifts when combined linearly provide a dispersion which is better compared to those of the individual chemical shifts. The extended dispersion thus available in these experiments will help to obtain the unambiguous side chain and accurate NOE assignments especially for medium-sized alpha-helical or partially unstructured proteins [molecular weight (MW) between 12-15 kDa] as well as higher MW (between 15-25 kDa) folded proteins where spectral overlap renders inaccurate and ambiguous NOEs. Further, these reduced dimensionality experiments in combination with routinely used (15)N and (13)C' edited TOCSY and NOESY experiments will provide an alternative way for high-quality NMR structure determination of large unstable proteins (with very high shift degeneracy), which are not at all amenable to 4D NMR. The utility of these experiments has been demonstrated here using (13)C/(15)N labeled ubiquitin (76 aa) protein.  相似文献   

4.
A protocol for high-quality structure determination based on G-matrix Fourier transform (GFT) NMR is presented. Five through-bond chemical shift correlation experiments providing 4D and 5D spectral information at high digital resolution are performed for resonance assignment. These are combined with a newly implemented (4,3)D GFT NOESY experiment which encodes information of 4D 15N/15N-, 13C(alipahtic)/15N-, and 13C(aliphatic)/13C(aliphatic)-resolved [1H,1H]-NOESY in two subspectra, each containing one component of chemical shift doublets arising from 4D --> 3D projection at omega1:Omega(1H) +/- Omega(X) [X = 15N,13C(aliphatic)]. The peaks located at the centers of the doublets are obtained from simultaneous 3D 15N/13C(aliphatic)/13C(aromatic)-resolved [1H,1H]-NOESY, wherein NOEs detected on aromatic protons are also obtained. The protocol was applied for determining a high-quality structure of the 14 kDa Northeast Structural Genomics consortium target protein, YqfB (PDB ID ). Through-bond correlation and NOESY spectra were acquired, respectively, in 16.9 and 39 h (30 h for shift doublets, 9 h for central peaks) on a 600 MHz spectrometer equipped with a cryogenic probe. The rapidly collected highly resolved 4D NOESY information allows one to assign the majority of NOEs directly from chemical shifts, which yields accurate initial structures "within" approximately 2 angstroms of the final structure. Information theoretical "QUEEN" analysis of initial distance limit constraint networks revealed that, in contrast to structure-based protocols, such NOE assignment is not biased toward identifying additional constraints that tend to be redundant with respect to the available constraint network. The protocol enables rapid NMR data collection for robust high-quality structure determination of proteins up to approximately 20-25 kDa in high-throughput.  相似文献   

5.
NMR resonance assignments in the vicinity of paramagnetic metals in proteins are often difficult or impossible to make using conventional 1H detected 2-D and 3-D methods due to paramagnetic line broadening. The applicability of 13Calpha{13C'} and 13C'{15N} multiple quantum coherence methods for residue-specific assignments of resonances near paramagnetic centers is described, using the Ni2+-containing enzyme acireductone dioxygenase as an example.  相似文献   

6.
Assignments are presented for resonances in the magic-angle spinning solid-state NMR spectra of the major coat protein subunit of the filamentous bacteriophage Pf1. NMR spectra were collected on uniformly 13C and 15N isotopically enriched, polyethylene glycol precipitated samples of fully infectious and hydrated phage. Site-specific assignments were achieved for 231 of the 251 labeled atoms (92%) of the 46-residue-long coat protein, including 136 of the 138 backbone atoms, by means of two- and three-dimensional 15N and 13C correlation experiments. A single chemical shift was observed for the vast majority of atoms, suggesting a single conformation for the 7300 subunits in the 36 MDa virion in its high-temperature form. On the other hand, multiple chemical shifts were observed for the Calpha, Cbeta, and Cgamma atoms of T5 in the helix terminus and the Calpha and Cbeta atoms of M42 in the DNA interaction domain. The chemical shifts of the backbone atoms indicate that the coat protein conformation involves a 40-residue continuous alpha-helix extending from residue 6 to the C-terminus.  相似文献   

7.
Truncation by the presence of many short-range residual dipolar couplings (RDCs) hinders the observation of long-range RDCs in weakly aligned biomacromolecules. Perdeuteration of proteins followed by reprotonation of labile hydrogen positions greatly alleviates this problem. Here we show that for small perdeuterated proteins, a large number (up to 10 in protein G) of long-range RDCs to 13C and 1HN can be observed from individual amide protons. The 1HN <--> 13C RDCs comprise correlations to 13Calpha, 13Cbeta, and 13C' nuclei of the same and the preceding amino acid, as well as 13C' nuclei of hydrogen-bonded amino acids. The accuracy of the coupling constants is very high and defines individual internuclear distances to within few picometers. Deviations between measured RDC values and values predicted from the 1.1 A crystal structure of protein G are mainly found in two surface-exposed loop regions. The deviations show a strong correlation to the B-factor of the crystal structure.  相似文献   

8.
Widely used higher-dimensional Fourier transform (FT) NMR spectroscopy suffers from two major drawbacks: (i) The minimal measurement time of an N-dimensional FT NMR experiment, which is constrained by the need to sample N - 1 indirect dimensions, may exceed by far the measurement time required to achieve sufficient signal-to-noise ratios. (ii) The low resolution in the indirect dimensions severely limits the precision of the indirect chemical shift measurements. To relax on constraints arising from these drawbacks, we present here an acquisition scheme which is based on the phase-sensitive joint sampling of the indirect dimensions spanning a subspace of a conventional NMR experiment. This allows one to very rapidly obtain high-dimensional NMR spectral information. Because the phase-sensitive joint sampling yields subspectra containing "chemical shift multiplets", alternative data processing is required for editing the components of the multiplets. The subspectra are linearly combined using a so-called "G-matrix" and subsequently Fourier-transformed. The chemical shifts are multiply encoded in the resonance lines constituting the shift multiplets. This corresponds to performing statistically independent multiple measurements, and the chemical shifts can thus be obtained with high precision. To indicate that a combined G-matrix and FT is employed, we named the new approach "GFT NMR spectroscopy". GFT NMR opens new avenues to establish high-throughput protein structure determination, to investigate systems with a higher degree of chemical shift degeneracy, and to study dynamic phenomena such as slow folding of biological macromolecules in greater detail.  相似文献   

9.
NMR structure determination of large RNAs is often restricted by limited RDC information caused by chemical shift degeneracy. We established a general, time- and cost-effective methodology for the preparation of 13C/15N complementary labeled RNAs from a single plasmid. Applying this method to the 25 kDa BC1-DTE RNA, we were able to resolve severe chemical shift degeneracy, thereby almost doubling the number of RDC restraints in comparison to the conventional 13C,15N uniform-labeled RNA.  相似文献   

10.
We demonstrate the simultaneous measurement of several backbone torsion angles psi in the uniformly (13)C,(15)N-labeled alpha-Spectrin SH3 domain using two different 3D 15N-13C-13C-15N dipolar-chemical shift magic-angle spinning (MAS) NMR experiments. The first NCCN experiment utilizes double quantum (DQ) spectroscopy combined with the INADEQUATE type 13C-13C chemical shift correlation. The decay of the DQ coherences formed between 13C'(i) and 13C(alphai) spin pairs is determined by the "correlated" dipolar field due to 15N(i)-13C(alphai) and 13C'(i)-15N(i+1) dipolar couplings and is particularly sensitive to variations of the torsion angle in the regime |psi| > 140 degrees. However, the ability of this experiment to constrain multiple psi-torsion angles is limited by the resolution of the 13C(alpha)-(13)CO correlation spectrum. This problem is partially addressed in the second approach described here, which is an NCOCA NCCN experiment. In this case the resolution is enhanced by the superior spectral dispersion of the 15N resonances present in the 15N(i+1)-13C(alphai) part of the NCOCA chemical shift correlation spectrum. For the case of the 62-residue alpha-spectrin SH3 domain, we determined 13 psi angle constraints with the INADEQUATE NCCN experiment and 22 psi constraints were measured in the NCOCA NCCN experiment.  相似文献   

11.
Knowledge of chemical shift-structure relationships could greatly facilitate the NMR chemical shift assignment and structure refinement processes that occur during peptide/protein structure determination via NMR spectroscopy. To determine whether such correlations exist for polar side chain containing amino acid residues the serine dipeptide model, For-L-Ser-NH(2), was studied. Using the GIAO-RHF/6-31+G(d) and GIAO-RHF/TZ2P levels of theory the NMR chemical shifts of all hydrogen ((1)H(N), (1)H(alpha), (1)H(beta1), (1)H(beta2)), carbon ((13)C(alpha), (13)C(beta), (13)C') and nitrogen ((15)N) atoms have been computed for all 44 stable conformers of For-L-Ser-NH(2). An attempt was made to establish correlation between chemical shift of each nucleus and the major conformational variables (omega(0), phi, psi, omega(1), chi,(1) and chi(2)). At both levels of theory a linear correlation can be observed between (1)H(alpha)/phi, (13)C(alpha)/phi, and (13)C(alpha)/psi. These results indicate that the backbone and side-chain structures of For-L-Ser-NH(2) have a strong influence on its chemical shifts.  相似文献   

12.
We demonstrate a solid-state nuclear magnetic resonance technique, with the acronym ROCSA-LG, for the determination of backbone torsion angles psi in peptides with multiple, but isolated, uniformly labeled residues. The method correlates the 13C' chemical shift anisotropy and the 13Calpha-1Halpha heteronuclear dipolar tensors within a single uniformly labeled residue in a two-dimensional (2D) experiment. The technique requires the measurement of only five 2D spectra and is compatible with high-speed magic-angle spinning. Experimental results are presented for the 17-residue alpha-helical peptide MB(i+4)EK and for amyloid fibrils formed by the 15-residue peptide Abeta11-25.  相似文献   

13.
Here we examine the effect of magic-angle spinning (MAS) rate upon lineshape and observed peak position for backbone carbonyl (C') peaks in NMR spectra of uniformly-(13)C,15N-labeled (U-(13)C,15N) solid proteins. 2D N-C' spectra of U-(13)C,15N microcrystalline protein GB1 were acquired at six MAS rates, and the site-resolved C' lineshapes were analyzed by numerical simulations and comparison to spectra from a sparsely labeled sample (derived from 1,3-(13)C-glycerol). Spectra of the U-(13)C,15N sample demonstrate large variations in the signal-to-noise ratio and peak positions, which are absent in spectra of the sparsely labeled sample, in which most 13C' sites do not possess a directly bonded 13CA. These effects therefore are a consequence of rotational resonance, which is a well-known phenomenon. Yet the magnitude of this effect pertaining to chemical shift assignment has not previously been examined. To quantify these effects in high-resolution protein spectra, we performed exact numerical two- and four-spin simulations of the C' lineshapes, which reproduced the experimentally observed features. Observed peak positions differ from the isotropic shift by up to 1.0 ppm, even for MAS rates relatively far (a few ppm) from rotational resonance. Although under these circumstances the correct isotropic chemical shift values may be determined through simulation, systematic errors are minimized when the MAS rate is equivalent to approximately 85 ppm for 13C. This moderate MAS condition simplifies spectral assignment and enables data sets from different labeling patterns and spinning rates to be used most efficiently for structure determination.  相似文献   

14.
Amide 15N chemical shift anisotropy (CSA) tensors provide quantitative insight into protein structure and dynamics. Experimental determinations of 15N CSA tensors in biologically relevant molecules have typically been performed by NMR relaxation studies in solution, goniometric analysis of single-crystal spectra, or slow magic-angle spinning (MAS) NMR experiments of microcrystalline samples. Here we present measurements of 15N CSA tensor magnitudes in a protein of known structure by three-dimensional MAS solid-state NMR. Isotropic 15N, 13C alpha, and 13C' chemical shifts in two dimensions resolve site-specific backbone amide recoupled CSA line shapes in the third dimension. Application of the experiments to the 56-residue beta1 immunoglobulin binding domain of protein G (GB1) enabled 91 independent determinations of 15N tensors at 51 of the 55 backbone amide sites, for which 15N-13C alpha and/or 15N-13C' cross-peaks were resolved in the two-dimensional experiment. For 37 15N signals, both intra- and interresidue correlations were resolved, enabling direct comparison of two experimental data sets to enhance measurement precision. Systematic variations between beta-sheet and alpha-helix residues are observed; the average value for the anisotropy parameter, delta (delta = delta(zz) - delta(iso)), for alpha-helical residues is 6 ppm greater than that for the beta-sheet residues. The results show a variation in delta of 15N amide backbone sites between -77 and -115 ppm, with an average value of -103.5 ppm. Some sites (e.g., G41) display smaller anisotropy due to backbone dynamics. In contrast, we observe an unusually large 15N tensor for K50, a residue that has an atypical, positive value for the backbone phi torsion angle. To our knowledge, this is the most complete experimental analysis of 15N CSA magnitude to date in a solid protein. The availability of previous high-resolution crystal and solution NMR structures, as well as detailed solid-state NMR studies, will enhance the value of these measurements as a benchmark for the development of ab initio calculations of amide 15N shielding tensor magnitudes.  相似文献   

15.
A general strategy is proposed to assign aliphatic side-chain resonances of large 13C,15N-labeled proteins without deuteration, using 4D 13C,15N-edited NOESY and MQ-(H)CCH-TOCSY experiments on the basis of prior assignments of backbone and 13Cbeta resonances. The strategy has been tested on a 214 residue protein (DdCAD-1) and applied to a chain-selectively 13C,15N-labeled hemoglobin (65 kDa). About 96 and 80% aliphatic side-chain spins in DdCAD-1 and hemoglobin have been assigned, respectively. The strategy proposed here will be very useful for the structure determination and dynamics characterization of large proteins by NMR.  相似文献   

16.
A carbon-detected TROSY-optimized experiment correlating 1HN, 15N, and 13C' resonances, referred to as c-TROSY-HNCO is presented, in which the 1HN and 15N TROSY effects are maintained in both indirect dimensions, while the directly detected 13C' is doubly TROSY-optimized with respect to 1HN and 15N. A new strategy for sensitivity enhancement, the so-called double echo-antiecho (dEA), is described and implemented in the c-TROSY-HNCO experiment. dEA offers sensitivity enhancement of square root of 2 in both indirect dimensions and is generally applicable to many multidimensional experiments. A carbon-detected HNCO experiment, c-HNCO, without TROSY optimization and sensitivity enhancement is also designed for comparison purposes. Relaxation simulations show that for a protein with a rotational correlation time of 10 ns or larger, the c-TROSY-HNCO experiment displays comparable or higher signal-to-noise (S/N) ratios than the c-HNCO experiment, although the former selects only 1/4 of the initial magnetization relative to the later. The high resolution afforded in the directly detected carbon dimension allows direct measurement of the doublet splitting to extract 1JCalphaC' scalar and 1DCalphaC' residual dipolar couplings. Simulations indicate that the c-TROSY-HNCO experiment offers higher precision (lower uncertainty) compared to the c-HNCO experiment for larger proteins. The experiments are applied to 15N/13C/2H/[Leu,Val]-methyl-protonated IIBMannose, a protein of molecular mass 18.6 kDa with a correlation time of approximately 10 ns at 30 degrees C. The experimental pairwise root-mean-square deviation for the measured 1JCalphaC' couplings obtained from duplicate experiments is 0.77 Hz. By directly measuring the doublet splitting, the experiments described here are expected to be much more tolerant to nonuniform values of 1JCalphaC' (or 1JCalphaC' + 1DCalphaC' for aligned samples) and pulse imperfections due to the smaller number of applied pulses in the "out-and-stay" coherence transfer in the c-HNCO-TROSY experiment relative to conventional 1H-detected "out-and-back" quantitative J correlation experiments. A carbon-detected TROSY-optimized experiment correlating 1HN, 15N, and 13C' resonances, referred to as c-TROSY-HNCO is presented, in which the 1HN and 15N TROSY effects are maintained in both indirect dimensions, while the directly detected 13C' is doubly TROSY-optimized with respect to 1HN and 15N. A new strategy for sensitivity enhancement, the so-called double echo-antiecho (dEA), is described and implemented in the c-TROSY-HNCO experiment. dEA offers sensitivity enhancement of in both indirect dimensions and is generally applicable to many multidimensional experiments.  相似文献   

17.
The majority of protein structures are determined in the crystalline state, yet few methods exist for the characterization of dynamics for crystalline biomolecules. Solid-state NMR can be used to probe detailed dynamic information in crystalline biomolecules. Recent advances in high-resolution solid-state NMR have enabled the site-specific assignment of (13)C and (15)N nuclei in proteins. With the use of multidimensional separated-local-field experiments, we report the backbone and side chain conformational dynamics of ubiquitin, a globular microcrystalline protein. The measurements of molecular conformational order parameters are based on heteronuclear dipolar couplings, and they are correlated to assigned chemical shifts, to obtain a global perspective on the sub-microsecond dynamics in microcrystalline ubiquitin. A total of 38 Calpha, 35 Cbeta and multiple side chain unique order parameters are collected, and they reveal the high mobility of ubiquitin in the microcrystalline state. In general the side chains show elevated motion in comparison with the backbone sites. The data are compared to solution NMR order parameter measurements on ubiquitin. The SSNMR measurements are sensitive to motions on a broader time scale (low microsecond and faster) than solution NMR measurements (low nanosecond and faster), and the SSNMR order parameters are generally lower than the corresponding solution values. Unlike solution NMR relaxation-based order parameters, order parameters for (13)C(1)H(2) spin systems are readily measured from the powder line shape data. These results illustrate the potential for detailed, extensive, and site-specific dynamic studies of biopolymers by solid-state NMR.  相似文献   

18.
Magic-angle spinning solid-state NMR (SSNMR) studies of the beta1 immunoglobulin binding domain of protein G (GB1) are presented. Chemical shift correlation spectra at 11.7 T (500 MHz 1H frequency) were employed to identify signals specific to each amino acid residue type and to establish backbone connectivities. High sensitivity and resolution facilitated the detection and assignment of every 15N and 13C site, including the N-terminal (M1) 15NH3, the C-terminal (E56) 13C', and side-chain resonances from residues exhibiting fast-limit conformational exchange near room temperature. The assigned spectra lend novel insight into the structure and dynamics of microcrystalline GB1. Secondary isotropic chemical shifts report on conformation, enabling a detailed comparison of the microcrystalline state with the conformation of single crystals and the protein in solution; the consistency of backbone conformation in these three preparations is the best among proteins studied so far. Signal intensities and line widths vary as a function of amino acid position and temperature. High-resolution spectra are observed near room temperature (280 K) and at <180 K, whereas resolution and sensitivity greatly degrade substantially near 210 K; the magnitude of this effect is greatest among the side chains of residues at the intermolecular interface of the microcrystal lattice, which we attribute to intermediate-rate translational diffusion of solvent molecules near the glass transition. These features of GB1 will enable its use as an excellent model protein not only for SSNMR methods development but also for fundamental studies of protein thermodynamics in the solid state.  相似文献   

19.
Nuclear magnetic resonance (NMR) is a powerful tool to interrogate protein structure and dynamics residue by residue. However, the prerequisite chemical‐shift assignment remains a bottleneck for large proteins due to the fast relaxation and the frequency degeneracy of the 13Cα nuclei. Herein, we present a covariance NMR strategy to assign the backbone chemical shifts by using only HN(CO)CA and HNCA spectra that has a high sensitivity even for large proteins. By using the peak linear correlation coefficient (LCC), which is a sensitive probe even for tiny chemical‐shift displacements, we correctly identify the fidelity of approximately 92 % cross‐peaks in the covariance spectrum, which is thus a significant improvement on the approach developed by Snyder and Brüschweiler (66 %) and the use of spectral derivatives (50 %). Thus, we calculate the 4D covariance spectrum from HN(CO)CA and HNCA experiments, in which cross‐peaks with LCCs above a universal threshold are considered as true correlations. This 4D covariance spectrum enables the sequential assignment of a 42 kDa maltose binding protein (MBP), in which about 95 % residues are successfully assigned with a high accuracy of 98 %. Our LCC approach, therefore, paves the way for a residue‐by‐residue study of the backbone structure and dynamics of large proteins.  相似文献   

20.
Lithocholic acid N-(2-aminoethyl)amide (1) and deoxycholic acid N-(2-aminoethyl)amide(2) have been prepared and characterized by1H, 13C and 15N NMR. The accurate molecular masses of 1 and 2 have been determined by ESI MS. The formation of the Cd2+-complexes (1+Cd and 2+Cd) in CD3OD solution have been detected by 1H,13C, 15N and 113Cd NMR. The 13C NMR chemical shift assignments of 1 and 2 and their Cd2+-complexes are based on DEPT-135 and z-GS 1H,13C HMQC experiments as well as comparison with the assignments of the related structures. The 15N NMR chemical shiftassignments of the ligands and theirCd2+-complexes are based on z-GS1H,15N HMBC experiments. 13C NMR chemical shift differences between 1and its 1:1 Cd2+-complex based on ab initiocalculations at Hartree-Fock SCI-PCM level using3-21G(d) basis set are in agreement with theexperimental shift changes observed onCd2+-complexation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号