首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 218 毫秒
1.
娄太平  王家良 《物理化学学报》2007,23(10):1642-1646
锂离子传导材料LiTi2(PO4)3能在LiCl水溶液中高选择性地与Na+进行离子交换. 研究了NaCl 溶液中LiTi2(PO4)3上的Na/Li离子交换反应, 实验结果表明, 升高温度能显著提高LiTi2(PO4)3上的Na/Li交换反应速率, 其离子交换动力学规律可近似由JMAK(Johnson-Mehl-Aurami-Kalmogorav)方程描述. 对LiTi2(PO4)3在水和NaCl溶液中的溶解行为的研究结果表明, 升高温度能加快其在水中的溶解速率, pH值过大或过小及离子交换都会加剧LiTi2(PO4)3的溶解.  相似文献   

2.
采用溶胶凝胶法合成了Nasicon化合物Li3V2(PO4)3, 采用X射线衍射(XRD)对产品进行了物相分析. 采用充放电测试, 循环伏安(CV)研究了化合物的电化学性能和锂离子的脱嵌过程, 计算出Li在固相中的扩散系数(10-8 cm2•s-1); 采用交流阻抗测试(EIS)研究了Li3V2(PO4)3的电极过程; 对两种类型的阻抗图谱提出不同等效电路模型并对结果进行了拟合; 研究了Li3V2(PO4)3电极过程动力学以及新鲜电极界面在充放电过程中的变化特性.  相似文献   

3.
采用溶胶凝胶法合成了Nasicon化合物Li3V2(PO4)3, 采用X射线衍射(XRD)对产品进行了物相分析. 采用充放电测试, 循环伏安(CV)研究了化合物的电化学性能和锂离子的脱嵌过程, 计算出Li在固相中的扩散系数(10-8 cm2•s-1); 采用交流阻抗测试(EIS)研究了Li3V2(PO4)3的电极过程; 对两种类型的阻抗图谱提出不同等效电路模型并对结果进行了拟合; 研究了Li3V2(PO4)3电极过程动力学以及新鲜电极界面在充放电过程中的变化特性.  相似文献   

4.
Li3V2(PO4)3的溶胶-凝胶法合成及其性能研究   总被引:11,自引:0,他引:11  
以LiOH·H2O、NH4VO3、H3PO4和柠檬酸等为原料采用溶胶-凝胶法合成了锂离子二次电池正极材料磷酸钒锂(Li3V2(PO4)3)。考察了煅烧温度和配位剂种类等条件对产物组成及电化学性能的影响。研究了优化条件下制得样品的循环伏安、充放电性能和循环性能。0.1 C条件下,样品首次放电比容量达129.81 mAh·g-1,经过100次循环后容量几乎没有衰减,仍保持在128 mAh·g-1。X射线衍射研究表明合成单一Li3V2(PO4)3晶体所需温度比固相法低;并考察了循环20次后材料充电到各个单相的晶体结构,通过X射线衍射和最小二乘法计算给出了其晶胞参数变化过程,证实了循环嵌Li过程中晶体结构能够得到重现。  相似文献   

5.
低温固相反应合成Li3V2(PO4)3正极材料及其性能   总被引:1,自引:1,他引:1  
利用V2O5·nH2O湿凝胶,LiOH·H2O,NH4H2PO4和C等作原料,通过低温固相还原反应在550 ℃焙烧12 h制备出Li3V2(PO4)3正极材料。采用XRD,SEM和电化学测试对Li3V2(PO4)3样品性能进行研究。XRD研究表明本法所合成的Li3V2(PO4)3同传统的高温固相反应法所合成的Li3V2(PO4)3一样同属于单斜晶系结构。SEM测试表明所合成的样品平均粒径大小约为0.5 μm且粒径分布较窄。电化学测试表明以0.2 C的倍率放电时,样品的首次放电容量为130 mAh·g-1,室温下循环30次后其比容量为124 mAh·g-1。  相似文献   

6.
利用V2O5、LiOH·H2O、H2O2、NH4H2PO4与柠檬酸为原料,通过溶胶-凝胶法合成了碳包覆的Li3V2(PO4)3复合正极材料。采用XPS、XRD、SEM、TEM、拉曼光谱和电化学方法对材料的性能进行了研究。还研究了其结构与焙烧温度、样品电导率和电化学性能的关系。研究表明复合材料具有空间群为P21/n的单斜结构,表面包覆粗糙多孔的碳层。在800 ℃下制备的碳包覆样品的电子导电率高达9.81×10-5 S·cm-1,约为高温固相氢气还原法制备的未包覆碳Li3V2(PO4)3的10000倍。测试结果表明碳包覆Li3V2(PO4)3的电化学性能远优于未包覆碳的样品。在3.0~4.3 V电压范围内,以0.1C和2C倍率充放电时,碳包覆的Li3V2(PO4)3具有高比容量(分别为128和109 mAh·g-1)和优异的循环性能。  相似文献   

7.
娄太平  张乐  郭军兴 《化学学报》2010,68(6):466-470
研究了在不同温度下的NaNO3和AgNO3水溶液中Li1.3Ti1.7Al0.3(PO4)3和Na1.3Ti1.7Al0.3(PO4)3离子交换行为.实验表明Li1.3Ti1.7Al0.3(PO4)3和Na1.3Ti1.7Al0.3(PO4)3均显示出了高选择性与Na+和Ag+进行离子交换的特征,且对Ag+的选择性高于Na+.升高温度可显著提高Ag/Li和Ag/Na的交换反应速度.  相似文献   

8.
将LiNO3和Ti(OC4H9)4填填充在有序介孔碳CMK-3 孔道中, 然后烧结合成了Li4Ti5O12/CMK-3复合材料. 利用扫描电子显微镜(SEM)、透射电子显微镜(TEM)和X射线衍射(XRD)对其结构和微观形貌进行了表征. 利用差热-热重分析(TG-DTA)测试复合材料中Li4Ti5O12的含量. 利用充放电测试、循环伏安和电化学阻抗技术考察了复合材料作为锂离子电池负极材料的性能. 发现Li4Ti5O12分布在CMK-3孔道中及其周围, 复合材料的高倍率充放电性能显著优于商品Li4Ti5O12, 复合材料中Li4Ti5O12的比容量明显高于除去CMK-3的样品(在1C倍率时比容量为117.8 mAh·g-1), 其0.5C、1C和5C倍率的放电比容量分别为160、143 和131 mAh·g-1, 库仑效率接近100%, 5C倍率时循环100次的容量损失率只有0.62%. 本研究结果表明CMK-3明显提高了Li4Ti5O12的高倍率充放电性能, 可能是CMK-3特殊的孔道结构和良好的导电性减小了Li4Ti5O12的粒径并提高了其电导率.  相似文献   

9.
Li3V2(PO4)3的溶胶-凝胶合成及其性能研究   总被引:1,自引:0,他引:1  
以LiOH·H2O(LiF、Li2CO3、LiCH3COO·2H2O)、NH4VO3、H3PO4和柠檬酸为原料,采用Sol-gel法合成锂离子电池正极材料Li3V2(PO4)3。优化了锂源、溶胶的pH值、预烧条件、煅烧温度等合成条件,并采用XRD、SEM、恒电流充放电及循环伏安试验等方法,研究了所合成的Li3V2(PO4)3的结构形貌和电化学性能。结果表明,以LiOH·H2O为锂源,溶胶的pH值等于3,于氩气氢气(体积比9∶1)混合气中300 ℃预烧 4 h,并在氩气氢气(体积比9∶1)混合气中600 ℃煅烧8 h合成的Li3V2(PO4)3正极材料为标准的单斜结构,具有较高的放电比容量和较好的循环稳定性,0.1C和1C倍率下首次放电比容量分别为130 mAh·g-1和129 mAh·g-1;1C倍率下循环40次后,容量仍为127 mAh·g-1,容量保持率为98.4%;随后又进行10C倍率放电,10次循环后容量为105 mAh·g-1,容量保有率达98.1%。循环伏安测试表明,该正极材料具有较好的电化学可逆性。  相似文献   

10.
通过简便的蒸发方法得到了2种碱金属磺酸盐非线性光学(NLO)晶体,即Li(NH2SO3)和Na(NH2SO3)。Li(NH2SO3)以极性空间群Pca21(编号29)结晶。Li(NH2SO3)的结构可以描述为由[LiO4]7-多面体通过共角连接与NH2SO3-四面体相互连接而形成的三维网络。Na(NH2SO3)以极性空间群 P212121(编号 19)结晶。Na(NH2SO3)的结构可以描述为由扭曲的[NaO6]11-八面体通过共角连接与 NH2SO3-四面体相互连接而形成的三维网络。紫外可见近红外光谱表明,Li(NH2SO3)和 Na(NH2SO3)分别具有 5.25 和 4.81eV 的大光学带隙。粉末二次谐波发生(SHG)测量显示,Li(NH2SO3)和 Na(NH2SO3)的 SHG 强度分别为 KH2PO4的 0.32 倍和 0.31倍。第一原理计算证实,非线性光学性能主要来自氨基磺酸阴离子和碱金属氧阴离子多面体的协同作用。  相似文献   

11.
研究了用功能材料Li2Mg2Si4O10F2 (LHT)、H2Mn8O16•1.4H2O (CRYMO)和Li1.3Ti1.7Al0.3(PO4)3 (LTAP)分别去除高浓度氯化锂水溶液中的杂质Fe3+、K+和Na+.实验结果表明,这几种功能材料分别对溶液中的杂质Fe3+、K+和Na+有很高的选择性,除杂效果明显.分析和研究了这几种功能材料在高浓度氯化锂水溶液中分别与Fe3+、K+和Na+的交换行为.结果表明,在高浓度氯化锂溶液中这几种功能材料与杂质交换的动力学行为可近似用JMAK方程描述.  相似文献   

12.
Li1.3Zr1.7Al0.3(PO4)3的离子交换特性   总被引:1,自引:0,他引:1  
锂作为21世纪推动科学技术发展的重要元素之一,被誉为“工业味精”、“能源之星”。目前锂及其相关盐类材料已成为信息产业、核能源、航空航天技术、新型材料及军事科技等行业重点开发领域,具有极高科学价值和广阔商业前景[1 ̄4]。氯化锂是电解制金属锂的主要原料,它的纯度是电  相似文献   

13.
A detailed structural and electrochemical study of the ion exchanged Li(2)Ti(6)O(13) titanate as a new anode for Li-ion batteries is presented. Subtle structural differences between the parent Na(2)Ti(6)O(13), where Na is in an eightfold coordinated site, and the Li-derivative, where Li is fourfold coordinated, determine important differences in the electrochemical behaviour. While the Li insertion in Na(2)Ti(6)O(13) proceeds reversibly the reaction of lithium with Li(2)Ti(6)O(13) is accompanied by an irreversible phase transformation after the first discharge. Interestingly, this new phase undergoes reversible Li insertion reaction developing a capacity of 170 mAh g(-1) at an average voltage of 1.7 V vs. Li(+)/Li. Compared with other titanates this result is promising to develop a new anode material for lithium ion rechargeable batteries. Neutron powder diffraction revealed that Na in Na(2)Ti(6)O(13) and Li in Li(2)Ti(6)O(13) obtained by Na/Li ion exchange at 325 °C occupy different tunnel sites within the basically same (Ti(6)O(13))(2-) framework. On the other hand, electrochemical performance of Li(2)Ti(6)O(13) itself and the phase released after the first full discharge is strongly affected by the synthesis temperature. For example, heating Li(2)Ti(6)O(13) at 350 °C produces a drastic decrease of the reversible capacity of the phase obtained after full discharge, from 170 mAh g(-1) to ca. 90 mAh g(-1). This latter value has been reported for Li(2)Ti(6)O(13) prepared by ion exchange at higher temperature.  相似文献   

14.
研究了LiZr2(PO4)3在水溶液中的Na/Li和Ag/Li离子交换行为.结果表明,LiZr2(PO4)3对Na+和Ag+离子均具有很高的选择性,且对Ag+的选择性高于Na+.LiZr2(PO4)3与Ag+的离子交换反应是通过形成固溶体的形式进行的,而与Na+的离子交换反应则是通过置换进行的.温度升高有利于提高LiZr2(PO4)3上Na/Li和Ag/Li的离子交换反应速度.  相似文献   

15.
Li4Ti5Ol2的合成及对Li+的离子交换动力学   总被引:2,自引:0,他引:2  
用溶胶-凝胶法合成出Li4Ti5Ol2, 对其进行了酸改性, 制得锂离子筛IE-H. 测定了IE-H对Li+、Na+的饱和交换容量和pH滴定曲线等离子交换性能, 并对其进行了X射线衍射分析, 同时采用中断接触法判断该离子交换反应的控制机理, 用缩核模型描述离子筛IE-H交换Li+的动力学. 结果表明, 合成出的Li4Ti5Ol2和锂离子筛IE-H均为尖晶石结构; 用不同浓度HNO3溶液处理Li4Ti5Ol2时, Li+的抽出率为19.6%-81.5%, Ti4+的抽出率在4.2%以下; 锂离子筛IE-H 对Li+的饱和交换容量较高, 达到5.95 mmol·g-1, 离子筛IE-H交换Li+的控制步骤是颗粒扩散控制(PDC), 得到了25 ℃, Li+浓度为20.0 mmol·L-1和5.0 mmol·L-1时锂离子筛交换Li+的动力学方程和颗粒扩散系数.  相似文献   

16.
以Na2CO3, (CH3CO2)2Mn·4H2O, Al2O3, Na3PO4·12H2O和CH3COOLi·2H2O为原料, 通过2次高温固相法和一步水热离子交换法得到一系列铝和磷掺杂的LiMn0.97Al0.03O2, LiMnO1.99(PO4)0.01和LiMn0.97Al0.03O2-x(PO4)x(x=0.01, 0.03, 0.05)化合物. 用X射线衍射(XRD)表征了前驱体及交换产物的晶体结构, 用扫描电镜(SEM) 测定了晶体的形貌. 通过X射线光电子能谱(XPS)、傅里叶红外光谱及恒电流充放电测试, 研究了掺杂离子对合成材料结构及电化学性能的影响. 研究结果表明, Al-PO4复合掺杂综合了Al3+掺杂提高材料的电化学反应活性和减低材料的电化学反应阻抗以及PO43-掺杂增大材料的晶胞体积的特点, 提高材料中Li+的扩散能力, 有效地抑制了材料由于Jahn-Teller效应引起的结构畸变, 改性后的LiMnO2正极材料既保持了较高的容量又获得了良好的电化学循环性能.  相似文献   

17.
The new compounds Li(2-x)Na(x)Ni[PO(4)]F (x = 0.7, 1, and 2) have been synthesized by a solid state reaction route. Their crystal structures were determined from single-crystal X-ray diffraction data. Li(1.3)Na(0.7)Ni[PO(4)]F crystallizes with the orthorhombic Li(2)Ni[PO(4)]F structure, space group Pnma, a = 10.7874(3), b = 6.2196(5), c = 11.1780(4) ? and Z = 8, LiNaNi[PO(4)]F crystallizes with a monoclinic pseudomerohedrally twinned structure, space group P2(1)/c, a = 6.772(4), b = 11.154(6), c = 5.021(3) ?, β = 90° and Z = 4, and Na(2)Ni[PO(4)]F crystallizes with a monoclinic twinned structure, space group P2(1)/c, a = 13.4581(8), b = 5.1991(3), c = 13.6978(16) ?, β = 120.58(1)° and Z = 8. For x = 0.7 and 1, the structures contain NiFO(3) chains made up of edge-sharing NiO(4)F(2) octahedra, whereas for x = 2 the chains are formed of dimer units (face-sharing octahedra) sharing corners. These chains are interlinked by PO(4) tetrahedra forming a 3D framework for x = 0.7 and different Ni[PO(4)]F layers for x = 1 and 2. A sodium/lithium disorder over three atomic positions is observed in Li(1.3)Na(0.7)Ni[PO(4)]F structure, whereas the alkali metal atoms are well ordered in between the layers in the LiNaNi[PO(4)]F and Na(2)Ni[PO(4)]F structures, which makes both compounds of great interest as potential positive electrodes for sodium cells.  相似文献   

18.
The alluaudite lithiated phases Li(0.5)Na(0.5)MnFe(2)(PO(4))(3) and Li(0.75)Na(0.25)MnFe(2)(PO(4))(3) were prepared via a sol-gel synthesis, leading to powders with spongy characteristics. The Rietveld refinement of the X-ray and neutron diffraction data coupled with ab initio calculations allowed us for the first time to accurately localize the lithium ions in the alluaudite structure. Actually, the lithium ions are localized in the A(1) and A(1)' sites of the tunnel. M?ssbauer measurements showed the presence of some Fe(2+) that decreased with increasing Li content. Neutron diffraction revealed the presence of a partial Mn/Fe exchange between the two transition metal sites that shows clearly that the oxidation state of the element is fixed by the type of occupied site. The electrochemical properties of the two phases were studied as positive electrodes in lithium batteries in the 4.5-1.5 V potential window, but they exhibit smaller electrochemical reversible capacity compared with the non-lithiated NaMnFe(2)(PO(4))(3). The possibility of Na(+)/Li(+) ion deintercalation from (Na,Li)MnFe(2)(PO(4))(3) was also investigated by DFT+U calculations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号