首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We propose a controller for a class of 2-DOF underactuated mechanical systems with discontinuous friction in the unactuated joint. The control objective is the regulation of the unactuated variable while the position and speed of the actuated joint remain bounded. The unactuated joint is considered as a mechanical system with discontinuous friction but continuous, artificial control input given by a term depending on the actuated positions and velocities. The proposed controller guarantees the convergence of the position error of the unactuated joint to zero, and it is robust with respect to some uncertainty in the discontinuous friction coefficients. We illustrate the technique with its application to two systems.  相似文献   

2.
Ashour  O. N.  Nayfeh  A. H. 《Nonlinear dynamics》2002,28(3-4):309-322
A nonlinear adaptive vibration absorber to control the vibrations offlexible structures is investigated. The absorber is based on thesaturation phenomenon associated with dynamical systems possessingquadratic nonlinearities and a two-to-one internal resonance. Thetechnique is implemented by coupling a second-order controller with thestructure through a sensor and an actuator. Energy is exchanged betweenthe structure and the controller and, near resonance, the structure'sresponse saturates to a small value.Experimental results are presented for the control of a rectangularplate and a cantilever beam using piezoelectric ceramics andmagnetostrictive alloys as actuators. The control technique isimplemented using a digital signal processing board and a modelingsoftware. The control strategy is made adaptive by incorporating anefficient frequency-measurement technique. This is validated bysuccessfully testing the control strategy for a nonconventionalproblem, where nonlinear effects hinder the application of thenonadaptive controller.  相似文献   

3.
This note considers the problem of direct adaptive neural control for a class of nonlinear single-input/single-output (SISO) strict-feedback stochastic systems. The variable separation technique is introduced to decompose the coefficient functions of the diffusion term. Radical basis function (RBF) neural networks are used to approximate unknown and desired control signals, then a novel direct adaptive neural controller is constructed via backstepping. The proposed adaptive neural controller guarantees that all the signals in the closed-loop system remain bounded in probability. A main advantage of the proposed controller is that it contains only one adaptive parameter needed to be updated online. Simulation results demonstrate the effectiveness of the proposed approach.  相似文献   

4.
It is concerned with the problem of disturbance attenuation with stability for uncertain nonlinear systems by adaptive output feedback. By a partial-state observer and Backstepping technique, an adaptive output feedback controller was constructed, which can solve the standard gain disturbance attenuation problem with internal stability.  相似文献   

5.
In this paper, the problem of adaptive fuzzy decentralized control is investigated for a class of pure-feedback nonlinear interconnected large-scale systems. During the controller design, fuzzy logical systems are used to model packaged unknown nonlinearities and backstepping technique is used to construct adaptive fuzzy decentralized controller. It is shown that the proposed control scheme can guarantee that all the signals in the closed-loop system are semiglobally uniformly ultimately bounded. The main advantage of this study lies in that only one adaptive parameter needs to be estimated online for each subsystem. Simulation results further illustrate the effectiveness of the suggested approach.  相似文献   

6.
Zhang  Mingyue  Guan  Yongliang  Li  Chao  Luo  Sha  Li  Qingdang 《Nonlinear dynamics》2023,111(9):8347-8368

A composite controller based on a backstepping controller with an adaptive fuzzy logic system and a nonlinear disturbance observer is proposed in this paper to address the disturbance and uncertainty issues in the control of the optoelectronic stabilized platform. The matched and unmatched disturbances and system uncertainty are included in the stabilized platform model. The system's uncertainty and disturbance are approximated and estimated using an adaptive fuzzy logic system and a nonlinear disturbance observer. Moreover, the backstepping control algorithm is utilized to control the system. The simulations are performed in four states to confirm the viability of the proposed control technique. The proportional integral controller, proportional integral-disturbance observer controller, and fuzzy backstepping controller are contrasted with the proposed controller. It has been noted that the proposed controller's instantaneous disturbance's highest value is 5.1°/s. The maximal value of the coupling output for the two gimbals utilizing the proposed controller, however, is 0.0008°/s and 0.0018°/s, respectively. The findings presented here demonstrate that the backstepping controller, which is based on an adaptive fuzzy logic system and a nonlinear disturbance observer, is capable of precise tracking and dynamic tracking of a stabilized platform under disturbance and uncertainty.

  相似文献   

7.
This paper is concerned with the yaw-moment stabilization for four-wheel independent-drive electric vehicle. A second-order sliding mode observer is first designed to estimate the required sideslip angle in a finite time. Then, the finite-time control technique and nonlinear disturbance observer are applied to construct the upper controller to drive both yaw rate and sideslip angle to their desired values. Finally, the lower controller is developed to distribute the torques to the independent four wheels according to the desired yaw moment obtained by the given upper controller. Comparisons among linear, discontinuous and nonsmooth controllers under different working conditions are given by using CarSim software.  相似文献   

8.
A technique to synchronize arrays of dynamical systems is presented. The arrays are formed by uncertain nonlinear second-order systems, called nodes, where only the generalized position is available. The synchronization technique can be applied to many array topologies where the connections can be unidirectional or bidirectional with different weights; this produces a connection matrix that it is not necessarily symmetric. The design of the coupling signals is based on a robust discontinuous controller and on an exact deriver that estimates the velocity of each node. We present experimental results to illustrate the performance of the synchronization technique.  相似文献   

9.
The performance of improved initial estimates and ‘heuristic’ and ‘adaptive’ techniques for time step control in the iterative solution of Richards equation is evaluated. The so‐called heuristic technique uses the convergence behaviour of the iterative scheme to estimate the next time step whereas the adaptive technique regulates the time step on the basis of an approximation of the local time truncation error. The sample problems used to assess these various schemes are characterized by nonuniform (in time) boundary conditions, sharp gradients in the infiltration fronts, and discontinuous derivatives in the soil hydraulic properties. It is found that higher order initial solution estimates improve the convergence of the iterative scheme for both the heuristic and adaptive techniques, with greater overall performance gains for the heuristic scheme, as could be expected. It is also found that the heuristic technique outperforms the adaptive method under strongly nonlinear conditions. Previously reported observations suggesting that adaptive techniques perform best when accuracy requirements on the numerical solution are very stringent are confirmed. Overall both heuristic and adaptive techniques have their limitations, and a more general or mixed time stepping strategy combining truncation error and convergence criteria is recommended for complex problems. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

10.
This paper focuses on the problem of the adaptive neural control for a class of a perturbed pure-feedback nonlinear system. Based on radial basis function (RBF) neural networks’ universal approximation capability, an adaptive neural controller is developed via the backstepping technique. The proposed controller guarantees that all the signals in the closed-loop system are bounded and the tracking error eventually converges to a small neighborhood around the origin. The main advantage of this note lies in that a control strategy is presented for a class of pure-feedback nonlinear systems with external disturbances being bounded by functions of all state variables. A numerical example is provided to illustrate the effectiveness of the suggested approach.  相似文献   

11.
Function approximation-based sliding mode adaptive control   总被引:1,自引:0,他引:1  
For the position tracking in DC motor with unknown bound time-varying dead zone uncertainties, a novel sliding mode adaptive controller is proposed by means of sliding mode and function approximation technique in this paper. First, control law with an uncertain term and another compensative term is obtained using sliding mode technique, and then the function approximation technique is employed to transform the uncertain term into finite combinations of orthonormal basis functions. The concrete expressions of uncertain term and compensative term can thus be derived based on the Lyapunov design. Actual system control experiments of the sliding adaptive control proposed are given.  相似文献   

12.
Yang  Cun  Wu  Zhaojing 《Nonlinear dynamics》2023,111(9):8369-8381

In this paper, the adaptive robust controller based on dynamic surface technique is investigated for the maneuvering problem of uncertain nonlinear systems with external disturbances. As preliminary, the definition of semi-globally uniformly practically asymptotically stable and its Lyapunov criterion are presented. The static part of controller with smooth robust compensator and adaptive law is designed to achieve the geometric task of maneuverability, and the dynamic control is proposed to reach the speed task by filtered-gradient update law. Moreover, utilizing first-order filter, the problem of “dimensional explosion” is avoided in controller design. Simulation is conducted for three-mecanum-wheeled mobile robot actuated by DC motors to illustrate the effectiveness of the control strategy.

  相似文献   

13.
Wu  Chen  Gao  Shigen  Dong  Hairong 《Nonlinear dynamics》2020,102(4):2597-2615
Nonlinear Dynamics - In this paper, an adaptive prescribed performance controller, consisting of a novel scalarly virtual parameter adaptation (SVPA) technique, is developed for a class of...  相似文献   

14.
In this paper, a novel decentralized adaptive neural control scheme is proposed for a class of uncertain multi-input and multi-output (MIMO) nonlinear time-delay systems. RBF neural networks (NNs) are used to tackle unknown nonlinear functions, then the decentralized adaptive NN tracking controller is constructed by combining Lyapunov–Krasovskii functions and the dynamic surface control (DSC) technique along with the minimal-learning-parameters (MLP) algorithm. The proposed controller guarantees semi-global uniform ultimate boundedness (SGUUB) of all the signals in the closed-loop large-scale system, while the tracking errors converge to a small neighborhood of the origin. An advantage of the proposed control scheme lies in that the number of adaptive parameters for each subsystem is reduced to one, and three problems of “computational explosion,” “dimension curse” and “controller singularity” are solved, respectively. Finally, a numerical simulation is presented to demonstrate the effectiveness and performance of the proposed scheme.  相似文献   

15.
Zhang  Ruoxun  Yang  Shiping 《Nonlinear dynamics》2011,66(4):831-837
This letter investigates the synchronization of a class of three-dimensional fractional-order chaotic systems. Based on sliding mode variable structure control theory and adaptive control technique, a single-state adaptive-feedback controller containing a novel fractional integral sliding surface is developed to synchronize a class of fractional-order chaotic systems. The present controller, which only contains a single driving variable, is simple both in design and implementation. Simulation results for three fractional-order chaotic systems are provided to illustrate the effectiveness of the proposed scheme.  相似文献   

16.
In this paper, a novel adaptive nonlinear controller is designed to achieve stochastic synchronization of complex networks. We find that this novel adaptive nonlinear controller is less conservative and may be more widely used than the traditional adaptive linear controller. By using the properties of Weiner process, the stochastic synchronization of complex networks with stochastic perturbation via the proposed novel adaptive nonlinear controller can be achieved. Experimental tests demonstrate the superior performance of this novel adaptive nonlinear controller as compared to a conventional adaptive linear controller.  相似文献   

17.
在惯导测试设备设计过程中会经常碰到摩擦干扰问题,作提出了一种采用自适用模糊补偿器的控制系统设计方案,以克服光栅试验台隐速中影响低速平稳性的摩擦干扰。首先,采用传统方法,基于对象的简化线性模型来设计PI控制器,然后利用自适应模糊技术对摩擦干扰进行了补偿。这种方案能较好地克服摩擦干扰来的低速性能差的问题。  相似文献   

18.
In this paper, a novel adaptive fractional-order feedback controller is first developed by extending an adaptive integer-order feedback controller. Then a simple but practical method to synchronize almost all familiar fractional-order chaotic systems has been put forward. Through rigorous theoretical proof by means of the Lyapunov stability theorem and Barbalat lemma, sufficient conditions are derived to guarantee chaos synchronization. A wide range of fractional-order chaotic systems, including the commensurate system and incommensurate case, autonomous system, and nonautonomous case, is just the novelty of this technique. The feasibility and validity of presented scheme have been illustrated by numerical simulations of the fractional-order Chen system, fractional-order hyperchaotic Lü system, and fractional-order Duffing system.  相似文献   

19.
In this paper, a fuzzy logic controller equipped with training algorithms is developed such that the H ?? tracking performance should be satisfied for a model-free nonlinear fractional order time delay system which is infinite dimensional in nature and time delay is a source of instability. In order to deal with the linguistic uncertainties caused from delay terms, the adaptive time delay fuzzy logic system is constructed to approximate the unknown time delay system functions. By incorporating Lyapunov stability criterion with H ?? tracking design technique, the free parameters of the adaptive fuzzy controller can be tuned on line by output feedback control law and adaptive law. Moreover, the tracking error and external disturbance can be attenuated to arbitrary desired level. The numerical results show the effectiveness of the proposed adaptive H ?? tracking scheme.  相似文献   

20.
In this paper, a direct adaptive robust controller for a class of SISO nonaffine nonlinear systems is presented. The existence of an ideal controller is proved based on the Implicit Function Theorem. Since the Implicit Function Theorem only guarantees the existence of the controller and does not provide a way to construct it, a neural network is employed to approximate the unknown ideal controller. In addition, an observer is designed to estimate the system states because all the states may not be available for measurements. In this method, a priori knowledge about the sign of control gain is not required and, in order to cope with unknown control direction, the Nussbaum-type technique is used. Moreover, only one adaptive parameter is needed to be updated and also a robust term is used in the control signal to reduce the effect of external disturbances and approximation errors. Furthermore, the stability analysis for the closed-loop system is presented based on the Lyapunov stability method. Theoretical results are illustrated through a simulation example. These simulations show the effectiveness of the proposed method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号