首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
采用新型荧光衍生试剂2-(11H-苯[a]咔唑)-乙酸(BCA)进行柱前衍生并经荧光检测对脂肪胺进行高效液相色谱(HPLC)分离和质谱定性.衍生物荧光激发和发射波长为λex=285 nm,λem=384 nm.60 ℃下在乙腈溶剂中用N-乙基-N′-[(3-二甲氨基)丙基]碳二亚胺盐酸盐(EDC)作催化剂, 衍生反应15 min后获得稳定的荧光产物.在Hypersil BDS C18 (4.0 mm×200 mm, 10 μm) 色谱柱上, 采用梯度洗脱对12种脂肪胺衍生物进行了优化分离.采用大气压化学电离源(APCI Source)正离子模式进行质谱定性, 实现了各种脂肪胺衍生物的快速、准确测定.脂肪胺的线性回归系数不小于0.999 8 , 检出限(S/N=3)为5.73 ~31.3 fmol.  相似文献   

2.
合成新型荧光试剂1,2-苯并-3,4-二氢咔唑-9-异丙基氯甲酸酯(BCIC)作为柱前衍生化试剂,在Eclipse XDB-C8色谱柱上,通过梯度洗脱对5种多胺进行了分离和在线质谱定性。在乙腈中,以硼酸钠缓冲液(pH9)为催化剂,40℃下衍生反应10min后获得稳定的荧光产物。激发和发射波长分别为λex=333nm,λem=390nm。采用大气压化学电离源(APCI)正离子模式,实现了人尿中游离多胺的定性及定量测定。多胺的线性相关系数大于0.9996,检出限为5.3~9.9fmol。  相似文献   

3.
血清中胆汁酸的高效液相色谱荧光测定及质谱鉴定   总被引:4,自引:0,他引:4  
在Hypersil C18色谱柱上,利用新型荧光试剂1,2-苯并-3,4-二氢咔唑-9-乙基对甲苯磺酸酯(BDETS)作柱前衍生化试剂,采用梯度洗脱对10种胆汁酸(BAs)荧光衍生物进行了优化分离。95℃下在二甲基亚砜溶剂中以柠檬酸钾作催化剂,衍生反应30min后获得稳定的荧光产物,衍生反应完全。激发和发射波长分别为λex=333nm,λem=390nm。采用大气压化学电离源(APCI)正离子模式,实现了血清中胆汁酸的定性和定量测定。线性回归系数均在0.9996以上,线性范围宽,检出限为12.94—21.94fmol。  相似文献   

4.
采用新型荧光衍生试剂2-(9-吖啶酮)-乙酸(AAA)进行柱前衍生并经荧光检测对脂肪胺进行了高效液相色谱(HPLC)分离和在线质谱定性.衍生物荧光激发和发射波长为λex=404nm,λem=440nm.30℃下在乙腈溶剂中用N-乙基-N′-[(3-二甲氨基)丙基]碳二亚胺盐酸盐(EDC)做催化剂,衍生反应20min后获得稳定的荧光产物.在HypersilBDSC18(4.6mm×100mm,5μm)色谱柱上,采用梯度洗脱对12种脂肪胺衍生物进行了优化分离.采用大气压化学电离源(APCISource)正离子模式进行在线柱后质谱定性,实现了各种脂肪胺衍生物的快速、准确测定.该方法具有良好的重现性,多数脂肪胺的线性回归系数大于0.9996,检测限为12.09~25.52fmol.  相似文献   

5.
利用新型荧光试剂1,2-苯并-3,4-二氢咔唑-9-异丙基氯甲酸酯(BCIC)作为柱前衍生化试剂,在乙腈中,以硼酸钠缓冲液(pH 9)为催化剂,40 ℃下衍生反应10 min后获得稳定的荧光产物.在Eclipse XDB-C8色谱柱上,通过梯度洗脱对12种游离脂肪胺进行了分离和在线质谱定性.激发和发射波长分别为λex=333 nm,λem=390 nm.采用大气压化学电离源(APCI)正离子模式,实现了污水中脂肪胺的定性及相应含量测定.脂肪胺的线性回归系数大于0.9996,检出限在10.57~37.83 fmol.  相似文献   

6.
 采用新型荧光试剂1,2-苯并-3,4-二氢咔唑-9-乙酸(BCAA)为柱前衍生化试剂,在Hypersil BDS-C18色谱柱上,通过梯度洗脱对12种游离脂肪胺进行了分离和在线质谱定性。以乙腈为溶剂,1-乙基-3-(3-二甲氨基丙基)环己碳二亚胺(EDAC)为缩合剂,在50 ℃条件下衍生反应15 min后获得稳定的荧光产物。激发波长和发射波长分别为333 nm和390 nm。采用大气压化学电离源(APCI)的正离子模式,实现了土壤和污水中脂肪胺的定性及其含量的测定。脂肪胺的线性相关系数大于0.9993,检测限为12~28 fmol。  相似文献   

7.
利用荧光衍生试剂1,2-苯并-3,4-二氢咔唑-9-乙基对甲苯磺酸酯(BDETS)作为脂肪酸柱前衍生化试剂,采用梯度洗脱在Eclipse XDB-C8色谱柱上对游离脂肪酸(FFA)(油酸、亚油酸、软脂酸和硬脂酸)衍生物进行分离.利用柱后在线的串联质谱以大气压化学电离源(APCI)正离子模式实现了各组分的质谱定性.荧光检测的激发和发射波长分别为λex=333 nm,λem=390 nm.脂肪酸的线性回归系数大于0.9990,检出限为3.38~6.59 nmol/L.建立的方法具有良好的重现性.利用此方法对超临界CO2提取的唐古特白刺籽油中几种游离脂肪酸进行了分析.结果表明白刺籽油中含有大量的游离不饱和脂肪酸.  相似文献   

8.
利用新型荧光试剂2-(2-(10-蒽基)-苯并咪唑)-乙酸(ABIA)为柱前衍生化试剂,在Akasil-C18色谱柱上,通过梯度洗脱对12种游离脂肪胺进行了分离和在线质谱定性。以乙腈为溶剂,N-乙基-N′-[(3-二甲氨基)丙基]碳二亚胺盐酸盐(EDC)为缩合剂,在50℃条件下衍生反应20 min后获得稳定的荧光产物。激发波长和发射波长分别为260 nm和430 nm,采用大气压化学电离源(APCI)的正离子模式,实现了土壤中脂肪胺的定性及其含量的测定。脂肪胺的线性相关系数大于0.9990,检出限为11.72~25.63 fmol。  相似文献   

9.
用新型荧光试剂1,2-苯并-3,4-二氢咔唑-9-乙基氯甲酸酯作为柱前衍生化试剂,在乙腈中,以pH 9的硼酸钠缓冲溶液为催化剂,40℃下衍生反应10 min后获得稳定的荧光产物.在Eclipse XDB-C8色谱柱上,通过梯度洗脱对5种多胺进行了分离和在线质谱定性.激发波长(λex)和发射波长(λem)分别为333 nm和390 nm.采用大气压化学电离源(APCI)正离子模式,实现了人尿中游离多胺的质谱定性及荧光定量测定.检出限(3S/N)在4.98~9.31 fmol.此方法应用于尿样中多胺的测定,并测得回收率在94%~98%之间.  相似文献   

10.
9-(2-羟乙基)-吖啶酮柱前衍生胆汁酸高效液相色谱分析   总被引:1,自引:0,他引:1  
采用一种新型紫外、荧光衍生试剂 9 ( 2 羟乙基 ) 吖啶酮 (HEA) ,在缩合剂 1 乙基 3 ( 3 二甲氨丙基 ) 碳酰二亚胺 (EDC·HCl)及碱性催化剂 4 二甲氨基吡啶 (DMAP)的存在下 ,对 1 0种胆汁酸进行柱前衍生 ,并通过荧光检测的方法进行高效液相色谱 (HPLC)分析。在HypersilBDSC18柱上 ,采用梯度洗脱 ,1 0种胆汁酸衍生物获得了基线分离 ,衍生物的激发和发射波长为λex/λem=40 4/44 0nm。衍生产物稳定性好 ,检测灵敏度高 ,按信噪比S/N =3∶1 ,平均检出限可达 8.3fmol。  相似文献   

11.
12.
13.
14.
A low barrier in the reaction pathway between the double Rydberg isomer of OH(3) (-) and a hydride-water complex indicates that the former species is more difficult to isolate and characterize through anion photoelectron spectroscopy than the well known double Rydberg anion (DRA), tetrahedral NH(4) (-). Electron propagator calculations of vertical electron detachment energies (VEDEs) and isosurface plots of the electron localization function disclose that the transition state's electronic structure more closely resembles that of the DRA than that of the hydride-water complex. Possible stabilization of the OH(3) (-) DRA through hydrogen bonding or ion-dipole interactions is examined through calculations on O(2)H(5) (-) species. Three O(2)H(5) (-) minima with H(-)(H(2)O)(2), hydrogen-bridged, and DRA-molecule structures resemble previously discovered N(2)H(7) (-) species and have well separated VEDEs that may be observable in anion photoelectron spectra.  相似文献   

15.
16.
17.
Summary Dichlorobis(methylsalicylato)titanium(IV) reacts with potassium or amine salts of dialkyl or diaryl dithiocarbamates in 11 and 12 molar ratios in anhydrous benzene (room temperature) or in boiling CH2Cl2 to yield mixed ligand complexes: (AcOC6H4O)2 Ti(S2CNR2)Cl (1) and (AcOC6H4O)2 Ti(S2CNR2)2 (2), R=Et, n-Pr, n-Bu, cyclo-C4H8 and cyclo-C5H10. These compounds are moisture sensitive and highly soluble in polar solvents. Molecular weight measurement in conjunction with i.r.,1H and13C n.m.r. spectral studies suggest coordination number 7 and 8 around titanium(IV) in (1) and (2) respectively.  相似文献   

18.
19.
Pure, highly explosive CF(3)C(O)OOC(O)CF(3) is prepared for the first time by low-temperature reaction between CF(3)C(O)Cl and Na(2)O(2). At room temperature CF(3)C(O)OOC(O)CF(3) is stable for days in the liquid or gaseous state. The melting point is -37.5 degrees C, and the boiling point is extrapolated to 44 degrees C from the vapor pressure curve log p = -1875/T + 8.92 (p/mbar, T/K). Above room temperature the first-order unimolecular decay into C(2)F(6) + CO(2) occurs with an activation energy of 129 kJ mol(-1). CF(3)C(O)OOC(O)CF(3) is a clean source for CF(3) radicals as demonstrated by matrix-isolation experiments. The pure compound is characterized by NMR, vibrational, and UV spectroscopy. The geometric structure is determined by gas electron diffraction and quantum chemical calculations (HF, B3PW91, B3LYP, and MP2 with 6-31G basis sets). The molecule possesses syn-syn conformation (both C=O bonds synperiplanar to the O-O bond) with O-O = 1.426(10) A and dihedral angle phi(C-O-O-C) = 86.5(32) degrees. The density functional calculations reproduce the experimental structure very well.  相似文献   

20.
Huang FQ  Ibers JA 《Inorganic chemistry》2001,40(10):2346-2351
The alkali metal/group 4 metal/polychalcogenides Cs(4)Ti(3)Se(13), Rb(4)Ti(3)S(14), Cs(4)Ti(3)S(14), Rb(4)Hf(3)S(14), Rb(4)Zr(3)Se(14), Cs(4)Zr(3)Se(14), and Cs(4)Hf(3)Se(14) have been synthesized by means of the reactive flux method at 823 or 873 K. Cs(4)Ti(3)Se(13) crystallizes in a new structure type in space group C(2)(2)-P2(1) with eight formula units in a monoclinic cell at T = 153 K of dimensions a = 10.2524(6) A, b = 32.468(2) A, c = 14.6747(8) A, beta = 100.008(1) degrees. Cs(4)Ti(3)Se(13) is composed of four independent one-dimensional [Ti(3)Se(13)(4-)] chains separated by Cs(+) cations. These chains adopt hexagonal closest packing along the [100] direction. The [Ti(3)Se(13)(4-)] chains are built from the face- and edge-sharing of pentagonal pyramids and pentagonal bipyramids. Formal oxidation states cannot be assigned in Cs(4)Ti(3)Se(13). The compounds Rb(4)Ti(3)S(14), Cs(4)Ti(3)S(14), Rb(4)Hf(3)S(14), Rb(4)Zr(3)Se(14), Cs(4)Zr(3)Se(14), and Cs(4)Hf(3)Se(14) crystallize in the K(4)Ti(3)S(14) structure type with four formula units in space group C(2)(h)()(6)-C2/c of the monoclinic system at T = 153 K in cells of dimensions a = 21.085(1) A, b = 8.1169(5) A, c = 13.1992(8) A, beta = 112.835(1) degrees for Rb(4)Ti(3)S(14);a = 21.329(3) A, b = 8.415(1) A, c = 13.678(2) A, beta = 113.801(2) degrees for Cs(4)Ti(3)S(14); a = 21.643(2) A, b = 8.1848(8) A, c = 13.331(1) A, beta = 111.762(2) degrees for Rb(4)Hf(3)S(14); a = 22.605(7) A, b = 8.552(3) A, c = 13.880(4) A, beta = 110.919(9) degrees for Rb(4)Zr(3)Se(14); a = 22.826(5) A, b = 8.841(2) A, c = 14.278(3) A, beta = 111.456(4) degrees for Cs(4)Zr(3)Se(14); and a = 22.758(5) A, b = 8.844(2) A, c = 14.276(3) A, beta = 111.88(3) degrees for Cs(4)Hf(3)Se(14). These A(4)M(3)Q(14) compounds (A = alkali metal; M = group 4 metal; Q = chalcogen) contain hexagonally closest-packed [M(3)Q(14)(4-)] chains that run in the [101] direction and are separated by A(+) cations. Each [M(3)Q(14)(4-)] chain is built from a [M(3)Q(14)] unit that consists of two MQ(7) pentagonal bipyramids or one distorted MQ(8) bicapped octahedron bonded together by edge- or face-sharing. Each [M(3)Q(14)] unit contains six Q(2)(2-) dimers, with Q-Q distances in the normal single-bond range 2.0616(9)-2.095(2) A for S-S and 2.367(1)-2.391(2) A for Se-Se. The A(4)M(3)Q(14) compounds can be formulated as (A(+))(4)(M(4+))(3)(Q(2)(2-))(6)(Q(2-))(2).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号