首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
We show that Langevin dynamics can be used to obtain force-extension curves for a single polymer chain under varying solvent conditions. We find that the chains obey Hooke-type and Pincus regime behavior for Theta and good solvents. However, in poor solvents a coil-strand coexistence is observed in the equilibrium state and this leads to a quite different type of deformation behavior.  相似文献   

2.
We used optical tweezers to measure the force-extension curve for the formation of tubes from giant vesicles. We show that a significant force barrier exists for the formation of tubes, which increases linearly with the radius of the area on which the pulling force is exerted. The tubes form through a first-order transition with accompanying hysteresis. We confirm these results with Monte Carlo simulations and theoretical calculations. Whether membrane tubes can be formed in, for example, biological cells, thus depends on the details of how forces are applied.  相似文献   

3.
4.
Force-induced deformations of a self-avoiding chain confined inside a cylindrical cavity, with diameter D, are probed using molecular dynamics simulations, scaling analysis, and analytical calculations. We obtain and confirm a simple scaling relation -fD approximately R(-9/4) in the strong-compression regime, while for weak deformations, we find fD = -A(R/R0) + B(R/R0)(-2), where A and B are constants, f the external force, and R the chain extension (with R0 its unperturbed value). For a strong stretch, we present a universal, analytical force-extension relation. Our results can be used to analyze the behavior of biomolecules in confinement.  相似文献   

5.
In answer to recent experimental force measurements between oppositely charged surfaces we here reproduce the repulsion in the presence of multivalent salt using Monte Carlo simulations within the primitive model. Our osmotic pressure curves are in good agreement with experimental results. In contrast with Poisson-Boltzmann calculations, both repulsion and charge inversion are seen in the simulations. Repulsion is observed only for conditions under which there is charge inversion at large separations. However, in these cases, the repulsion is present also at intermediate separations, where there is no charge inversion. The charge inversion is thereby not the cause of the repulsion. Instead the repulsion appears to be an effect of the large amount of excess salt in the slit. Both phenomena, however, are closely linked and a consequence of ion-ion correlations, promoted by a strong electrostatic coupling.  相似文献   

6.
A semiflexible harmonic chain model with extensible bonds is introduced and applied to the stretching of semiflexible polymers or filaments. The semiflexible harmonic chain model allows to study effects from bending rigidity, bond extension, discrete chain structure, and finite length of a semiflexible polymer in a unified manner. The interplay between bond extension and external force can be described by an effective inextensible chain with increased stretching force, which leads to apparently reduced persistence lengths in force-extension relations. We obtain force-extension relations for strong- and weak-stretching regimes which include the effects of extensible bonds, discrete chain structure, and finite polymer length. We discuss the associated characteristic force scales and calculate the crossover behaviour of the force-extension curves. Strong stretching is governed by the discrete chain structure and the bond extensibility. The linear response for weak stretching depends on the relative size of the contour length and the persistence length which affects the behaviour of very rigid filaments such as F-actin. The results for the force-extension relations are corroborated by transfer matrix and variational calculations.PACS: 87.15.-v Biomolecules: structure and physical properties - 87.15.Aa Theory and modeling; computer simulation - 87.15.La Mechanical properties  相似文献   

7.
We consider phase transitions in 2D XY-like systems with long-range dipole-dipole interactions and demonstrate that BKT-type phase transition always occurs separating the ordered (ferroelectric) and the disordered (paraelectric) phases. The low-temperature phase corresponds to a thermal state with bound vortex-antivortex pairs characterized by linear attraction at large distances. Using the Maier-Schwabl topological charge model, we show that bound vortex pairs polarize and screen the vortex-antivortex interaction, leaving only the logarithmic attraction at sufficiently large separations between the vortices. At higher temperatures the pairs dissociate and the phase transition similar to BKT occurs, though at a larger temperature than in a system without the dipole-dipole interaction.  相似文献   

8.
Single-molecule experiments on polymeric DNA show that the molecule can be overstretched at nearly constant force by about 70% beyond its relaxed contour length. In this publication we use steered molecular dynamics (MD) simulation to study the effect of structural defects on force-extension curves and structures at high elongation in a 30 base pair duplex pulled by its torsionally unconstrained 5' -5' ends. The defect-free duplex shows a plateau in the force-extension curve at 120pN in which large segments with inclined and paired bases (“S-DNA”) near both ends of the duplex coexist with a central B-type segment separated from the former by small denaturation bubbles. In the presence of a base mismatch or a nick, force-extension curves are very similar to the ones of the defect-free duplex. For the duplex with a base mismatch, S-type segments with highly inclined base pairs are not observed; rather, the overstretched duplex consists of B-type segments separated by denaturation bubbles. The nicked duplex evolves, via a two-step transition, into a two-domain structure characterized by a large S-type segment coexisting with several short S-type segments which are separated by short denaturation bubbles. Our results suggest that in the presence of nicks the force-extension curve of highly elongated duplex DNA might reflect locally highly inhomogeneous stretching.  相似文献   

9.
We present the reduced dynamics of a bead in a Rouse chain which is submerged in a bath containing a driving agent that renders it out-of-equilibrium. We first review the generalized Langevin equation of the middle bead in an equilibrated bath. Thereafter, we introduce two driving forces. Firstly, we add a constant force that is applied to the first bead of the chain. We investigate how the generalized Langevin equation changes due to this perturbation for which the system evolves towards a steady state after some time. Secondly, we consider the case of stochastic active forces which will drive the system to a nonequilibrium state. Including these active forces results in an extra contribution to the second fluctuation–dissipation relation. The form of this active contribution is analysed for the specific case of Gaussian, exponentially correlated active forces. We also discuss the resulting rich dynamics of the middle bead in which various regimes of normal diffusion, subdiffusion and superdiffusion can be present.  相似文献   

10.
Variational methods are applied to a single polyelectrolyte chain. The polymer is modeled as a Gaussian chain with screened electrostatic repulsion between all monomers. As a variational Hamiltonian, the most general Gaussian kernel, including the possibility of a classical or mean polymer path, is employed. The resulting self-consistent equations are systematically solved both for large and small monomer-monomer separations along the chain. In the absence of screening, the polymer is stretched on average. It is described by a straight classical path with Gaussian fluctuations around it. If the electrostatic repulsion is screened, the polymer is isotropically swollen for large separations, and for small separations the polymer correlation function is calculated as an analytic expansion in terms of the monomer-monomer separation along the chain. The electrostatic persistence length and the electrostatic blobsize are inferred from the crossover between distinct scaling ranges. We perform a global analysis of the scaling behavior as a function of the screening length and electrostatic interaction strength , where is the Bjerrum length and A is the distance of charges along the polymer chain. We find three different scaling regimes. i) A Gaussian-persistent regime with Gaussian behavior at small, persistent behavior at intermediate, and isotropically swollen behavior at large length scales. This regime occurs for weakly charged polymers and only for intermediate values of the screening length. The electrostatic persistence length is defined as the crossover length between the persistent and the asymptotically swollen behavior and is given by and thus disagrees with previous (restricted) variational treatments which predict a linear dependence on the screening length .ii) A Gaussian regime with Gaussian behavior at small and isotropically swollen behavior at large length scales. This regime occurs for weakly charged polymers and/or strong screening, and the electrostatic repulsion between monomers only leads to subfluent corrections to Gaussian scaling at small separations. The concept of a persistence length is without meaning in this regime. iii) A persistent regime , where the chain resembles a stretched rod on intermediate and small scales. Here the persistence length is given by the original Odijk prediction, , if the overstretching of the chain is avoided. We also investigate the effects of a finite polymer length and of an additional excluded-volume interaction, which modify the resultant scaling behavior. Applications to experiments and computer simulations are discussed. Received 24 December 1997  相似文献   

11.
Measurement of the force-extension curve for the mechanical unfolding process of a single protein molecule is expected to provide a value for the force necessary to deform the molecule. Integration of the observed curves can then yield an accurate estimate of the intra-molecular cohesive energy of the protein. To understand the details of such force-extension curves, it is necessary to begin by understanding the mechanical properties of simple structural elements such as the !-helix and #-sheet. In a series of experiments designed to obtain force-extension curves of helical and randomly coiled polyglutamic acid, we found an interesting phenomenon in linearly cross-linked dimer samples of the polymer. The remarkable observation indicated the possibility of a lateral interaction of helical rods within molecules. Mechanical distinction of such interactions will be useful for application of atomic force microscopy in studying the nanomechanics of tertiary interactions among peptide segments in protein molecules.  相似文献   

12.
We investigate the oxidation of nanocrystalline aluminum surfaces using molecular dynamics (MD) simulations with the variable charge model that allows charge dynamically transfer among atoms. The interaction potential between atoms is described by the electrostatic plus (Es+) potential model, which is composed of an embedded atom method potential and an electrostatic term. The simulations were performed from 300 to 750 K on polycrystalline samples with a mean grain size of 5 nanometers. We mainly focused on the effect of the temperature parameter on the oxidation kinetic. The results show that, beyond a first linear regime, the kinetics follows a direct logarithmic law (governed by diffusion process) and tends to a limiting value corresponding to a thickness of ∼3 nm. We also characterized at 600 K the effects of an external applied strain on the microstructure and the chemical composition of oxide films formed at the surface. In particular, we obtained a partially crystalline oxide films for all temperatures and we noticed a strong correlation between the degree of crystallinity of the oxide film and the oxidation temperature.  相似文献   

13.
Discrete sine-Gordon (SG) chains are studied with path-integral molecular dynamics. Chains commensurate with the substrate show the transition from pinning to quantum creep at bead masses slightly larger than in the continuous SG model. Within the creep regime, a field-driven transition from creep to complete depinning is identified. The effects of disorder on the chain's dynamics depend on the potential's roughness exponent H. For example, quantum fluctuations are generally too small to depin the chain if H=1/2, while an H=0 chain can be pinned or unpinned depending on the bead masses. Thermal fluctuations always depin the chain.  相似文献   

14.
15.
We study the free energy of the worm-like-chain model, in the constant-extension ensemble, as a function of the stiffness lambda for finite chains of length L. We find that the polymer properties obtained in this ensemble are qualitatively different from those obtained using constant-force ensembles. In particular, we find that as we change the stiffness parameter, t=L/lambda, the polymer makes a transition from the flexible to the rigid phase and there is an intermediate regime of parameter values where the free energy has three minima and both phases are stable. This leads to interesting features in the force-extension curves.  相似文献   

16.
We demonstrate that small charged nanocages can undergo reversible changes of shapes by modifying the ionic conditions including salt concentration, pH, and dielectric permittivity of the medium. Using numerical simulations, we analyze structures with various charge stoichiometric ratios. At zero or low charge densities, the shape of the cage is determined by its elastic properties, and the surface charge pattern is dictated by the globally fixed geometry. As the charge density per molecule increases, the shape is strongly affected by the electrostatic forces. In this regime, the shape of the nanocage is controlled by the charge distribution.  相似文献   

17.
In a quantum critical chain, the scaling regime of the energy and momentum of the ground state and low-lying excitations are described by conformal field theory (CFT). The same holds true for the von Neumann and Rényi entropies of the ground state, which display a universal logarithmic behavior depending on the central charge. In this Letter we generalize this result to those excited states of the chain that correspond to primary fields in CFT. It is shown that the nth Rényi entropy is related to a 2n-point correlator of primary fields. We verify this statement for the critical XX and XXZ chains. This result uncovers a new link between quantum information theory and CFT.  相似文献   

18.
When mixed together, DNA and polyaminoamide dendrimers form fibers that condense into a compact structure. We use optical tweezers to pull condensed fibers and investigate the decondensation transition by measuring force-extension curves (FECs). A characteristic force plateau (around 10 pN) and hysteresis between the pulling and relaxation cycles are observed for different dendrimer sizes, indicating the existence of a first-order transition between two phases (condensed and extended) of the fiber. Upon salt variation FECs change noticeably confirming that electrostatic forces drive the condensation transition. We propose a simple model for the decondensing transition that qualitatively reproduces the FECs and which is confirmed by atomic force microscopy images.  相似文献   

19.
We numerically investigate the problem of the propagation of a shock in an horizontal non-loaded granular chain with a bead interaction force exponent varying from unity to large values. When is close to unity we observed a cross-over between a nonlinearity-dominated regime and a solitonic one, the latest being the final steady state of the propagating wave. In the case of large values of the deformation field given by the numerical simulations is completely different from the one obtained by analytical calculation. In the following we studied the interaction of these shock waves with a mass impurity placed in the bead chain. Two different physical pictures emerge whether we consider a light or a heavy impurity mass. The scatter of the shock wave with a light impurity yields damped oscillations of the impurity which then behave as a solitary wave source. Differently an heavy impurity is just shifted by the shock and the transmitted wave loses its solitonic character being fragmented into waves of decreasing amplitudes. Received 23 June 1999  相似文献   

20.
We study the strong-coupling (SC) interaction between two like-charged membranes of finite thickness embedded in a medium of higher dielectric constant. A generalized SC theory is applied along with extensive Monte Carlo simulations to study the image charge effects induced by multiple dielectric discontinuities in this system. These effects lead to strong counterion crowding in the central region of the intersurface space upon increasing the solvent-membrane dielectric mismatch and change the membrane interactions from attractive to repulsive at small separations. These features agree quantitatively with the SC theory at elevated couplings or dielectric mismatch where the correlation hole around counterions is larger than the thickness of the central counterion layer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号