首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The effects of colored noise on self-propelled particles in a two-dimensional potential are investigated. The resonance phenomenon was found as the the average velocity has a maximum value with increasing x direction noise intensity. The average velocity takes its maximal value as the parameters (the y direction noise intensity, the self-propelled angle noise intensity, and so on) take suitable values. The y direction noise and the self-propelled angle noise have great effects on the x direction particles transport. The y direction noise and the self-propelled angle noise cannot induce x direction particles transport in the absence of x direction noise. The ratchet effect should disappear when there is no coupling between the x direction potential and the y direction potential.  相似文献   

2.
The Lévy flights’ diffusive behavior is studied within the framework of the dynamicalcontinuous time random walk (DCTRW) method, while the nonlinear friction is introduced ineach step. Through the DCTRW method, Lévy random walker in each step flies by obeying theNewton’s Second Law while the nonlinear friction f(v) = ?γ0v ?γ2v3 beingconsidered instead of Stokes friction. It is shown that after introducing the nonlinearfriction, the superdiffusive Lévy flights converges, behaves localization phenomenon withlong time limit, but for the Lévy index μ = 2 case, it is still Brownian motion.  相似文献   

3.
The maximum value of the light extinction coefficient μ, which can be observed in a dispersive medium with a relative refractive index n of the scattering particles, is studied within the framework of a quasi-crystalline approximation for nonabsorbing dispersive media consisting of monodisperse spherical scatterers. A change in the diffraction parameter x of the scattering particles and their volume concentration c v is accompanied by nonmonotonic variations of the extinction coefficient, and the function μ(x, c v ) exhibits several maxima. The dimensions and concentrations of particles are determined, for which the extinction coefficient reaches the absolute maximum μmax. The μmax value exhibits a monotonic growth with increasing relative refractive index n of the scattering particles. The conditions of validity of the Ioffe-Regel criterion of radiation localization have been studied. It is established that the localization in nonabsorbing dispersive media can be observed only for n ? 2.7. The intervals of x and c v in which the criterion of radiation localization is satisfied in dispersive media consisting of particles with n = 3.0 and 3.5 are determined.  相似文献   

4.
We consider an N-particle system of noncolliding Brownian motion starting from x 1x 2≤…≤x N with drift coefficients ν j , 1≤jN satisfying ν 1ν 2≤…≤ν N . When all of the initial points are degenerated to be zero, x j =0, 1≤jN, the equivalence is proved between a dilatation with factor 1/t of this drifted process and the noncolliding Brownian motion starting from ν 1ν 2≤…≤ν N without drift observed at reciprocal time 1/t, for arbitrary t>0. Using this reciprocal time relation, we study the determinantal property of the noncolliding Brownian motion with drift having finite and infinite numbers of particles.  相似文献   

5.
The model of dark matter featuring a component in the form of free particles and antiparticles (a, ā ) possessing self-interaction of the Coulomb type is considered. Darkmattermay form small-scale clumps where the annihilation of particles a and ā is enhanced. This annihilation may lead to observable effects (in cosmic rays, for example) and/or to the destruction of these clumps. However, there is an ambiguity in describing the annihilation (via recombination) of very slow particles, which may include a and ā in clumps. The effect of annihilation (in terms of the residual number of free particles a and ā in clumps) is estimated within two approaches (simplified quantum-mechanical and classical) at chosen parameter values.  相似文献   

6.
Anomalous diffusion is researched within the framework of the coupled continuous time random walk model, in which the space-time coupling is considered through the correlated function g(t) ~ t γ , 0 ≤ γ< 2, and the probability density function ω(t) of a particle’s transition time t follows a power law for large t: ω(t) ~ t ? (1 + α),1 <α< 2. The bi-fractional generalized master equation is derived analytically which can be applied to describe the transient bi-fractional diffusion phenomenon which is induced by the space-time coupling and the asymptotic behavior of ω(t). Numerical results show that for the transient bi-fractional diffusion, there is a transition from one fractional diffusion to another one in the diffusive process.  相似文献   

7.
It is shown that a moving neutral particle interacting with electrons may cause an “electron drag” within a filled band. The calculation uses perturbation theory and periodic boundary conditions and is based on the one-electron model. WithN being the number and ¯v the average velocity of the electrons, one finds that for largeN the electronic velocity sumN¯v induced by the motion of the neutral particle is independent ofN, i.e. of the size of the system. The lowest-order contributions toN¯v that do not necessarily vanish are seen to be those of second order in the interaction potential. These second-order contributions are studied. In a simple one-dimensional model they are found to be, in fact, not necessarily zero and to be proportional to the velocity of the neutral particle. An order-of-magnitude formula forN¯v is derived for this case. The calculation suggests that mobile neutral particles may act as charge carriers, their effective charge possibly being much smaller than the elementary charge. In real systems, neutral particles which interact with electrons might be represented by phonons and excitons.  相似文献   

8.
The physical consequences emerging from a theory stated byKraichnan are considered with regard to isotropic hydromagnetic turbulence. This theory involves the direct-interaction approximation retaining the phase correlation within each triad of Fourier amplitudes. These interactions are suggested to be very important in hydromagnetic turbulence. Hydrodynamic as well as magnetic impulse-response function and time-correlation are unequivocally the same. This result suggests the existence of a universal equilibrium range. Within the inertial range the total energy spectrumE g (k)=E(k)+E m (k) obeys the same law as in hydrodynamic turbulenceE(k). The valueE m (k)E(k) corresponds roughly to maximum energy flux through this range. The magnetic energy flux decreases rapidly for eddies with larger wave-numbers within the range of ohmic ? viscous dissipation.  相似文献   

9.
We investigate circular motion of neutral test particles on equatorial plane near a black hole in scalar-tensor-vector gravity. We consider three cases (i) α < G/GN (ii) α = G/GN and (iii) α > G/GN to find the regions where motion can exist. The corresponding effective potential, energy, angular momentum and center of mass energy are evaluated. Further, we define four different cases for α > G/GN and identify stable and unstable regions of circular orbits. It is found that circular orbits having zero angular momentum exist at r = αGNM due to repulsive gravity effects. We conclude that the structure of stable regions for α < G/GN as well as α = G/GN case is completely different from that of α > G/GN.  相似文献   

10.
We study the hydrodynamic and the hydrostatic behavior of the simple symmetric exclusion process with slow boundary. The term slow boundary means that particles can be born or die at the boundary sites, at a rate proportional to \(N^{-\theta }\), where \(\theta > 0\) and N is the scaling parameter. In the bulk, the particles exchange rate is equal to 1. In the hydrostatic scenario, we obtain three different linear profiles, depending on the value of the parameter \(\theta \); in the hydrodynamic scenario, we obtain that the time evolution of the spatial density of particles, in the diffusive scaling, is given by the weak solution of the heat equation, with boundary conditions that depend on \( \theta \). If \(\theta \in (0,1)\), we get Dirichlet boundary conditions, (which is the same behavior if \(\theta =0\), see Farfán in Hydrostatics, statical and dynamical large deviations of boundary driven gradient symmetric exclusion processes, 2008); if \(\theta =1\), we get Robin boundary conditions; and, if \(\theta \in (1,\infty )\), we get Neumann boundary conditions.  相似文献   

11.
This paper reports on measurements of the heat capacity at constant pressure C p in the 80–300-K temperature interval and the thermopower coefficient S at 5–300 K of the carbon preform of sapele wood, which was prepared at the carbonization temperature of 1000°C. Measurements of C p (T), our previous data on the phonon thermal conductivity, and literature information on the sound velocity have been used to calculate the phonon mean free path l(T) for this material. It has been shown that within the temperature interval 200–300 K, l is constant and equal to 11 Å, a figure matching the size of the nanocrystallites (“graphite fragments”) making up the carbon framework of the sapele carbon preform. The high-temperature parts of S(T) have been found to follow a linear course characteristic of diffusive thermopower for the degenerate state of charge carriers, with only one type of charge carriers present. The anisotropy of the thermopower coefficient has been estimated.  相似文献   

12.
13.
We study the motion of N = 2 overdamped Brownianparticles in gravitational interaction in a space of dimensiond = 2. This is equivalent to the simplified motion of twobiological entities interacting via chemotaxis when time delay anddegradation of the chemical are ignored. This problem also bearssimilarities with the stochastic motion of two point vorticesin viscous hydrodynamics [O. Agullo, A. Verga, Phys. Rev. E 63,056304 (2001)]. We analytically obtain the probability density offinding the particles at a distance r from each other at timet. We also determine the probability that the particles havecoalesced and formed a Dirac peak at time t(i.e. the probability that the reduced particle has reached r = 0at time t). Finally, we investigate the meansquare separation \(\langle\) r 2 \(\rangle\) and discuss the proper formof the virial theorem for this system. The reduced particle has anormal diffusion behavior for small times with a gravity-modifieddiffusion coefficient \(\langle\) r 2 \(\rangle\) = r 0 2 + (4k B /ξ μ)(T\(T_{*}\))t, wherek B \(T_{*}\) = Gm 1 m 2/2 is a critical temperature, and an anomalousdiffusion for large times \(\langle\) r 2 \(\rangle\) \(\propto\) \(t^{1-T_*/T}\). As a by-product, our solution also describes thegrowth of the Dirac peak (condensate) that forms at large time inthe post collapse regime of the Smoluchowski-Poisson system (orKeller-Segel model in biology) for T < T c = GMm/(4k B ). We find thatthe saturation of the mass of the condensate to the total mass isalgebraic in an infinite domain and exponential in a boundeddomain. Finally, we provide the general form of the virial theoremfor Brownian particles with power law interactions.  相似文献   

14.
We evaluate the temperature Tscis at the scission point and the saddle-to-scission time τscis for the fission of heated nuclei. We use classical Lagrange-like equations of motion within the liquid-drop model. The nuclear surface is parameterized by a two-parameter family of the Lawrence shapes. Conservative forces are defined through the free energy of the nucleus at finite temperatures. We use the friction tensor that is derived from the Navier-Stokes momentum-flux tensor and which takes into account the boundary conditions at the nuclear surface. The scission line is determined from the instability condition of the nuclear shape with respect to variations of the neck radius. A numerical solution to the dynamical equations is obtained for the 236U nucleus. The viscosity coefficient μ is deduced from a comparison of experimental data on the kinetic energy of fission fragments with the computed one. It is found that μ obtained by using our approach deviates significantly from μ of the standard hydrodynamic model.  相似文献   

15.
Coagulating systems are systems of chaotically moving particles that collide and coalesce, producing daughter particles of mass equal to the sum of the masses involved in the respective collision event. The present article puts forth basic ideas underlying the application of methods of quantum-field theory to the theory of coagulating systems. Instead of the generally accepted treatment based on the use of a standard kinetic equation that describes the time evolution of concentrations of particles consisting of a preset number of identical objects (monomers in the following), one introduces the probability W(Q, t) to find the system in some state Q at an instant t for a specific rate of transitions between various states. Each state Q is characterized by a set of occupation numbers Q = {n 1, n 2, ..., n g , ...}, where n g is the total number of particles containing precisely g monomers. Thereupon, one introduces the generating functional Ψ for the probability W(Q, t). The time evolution of Ψ is described by an equation that is similar to the Schrödinger equation for a one-dimensional Bose field. This equation is solved exactly for transition rates proportional to the product of the masses of colliding particles. It is shown that, within a finite time interval, which is independent of the total mass of the entire system, a giant particle of mass about the mass of the entire system may appear in this system. The particle in question is unobservable in the thermodynamic limit, and this explains the well-known paradox of mass-concentration nonconservation in classical kinetic theory. The theory described in the present article is successfully applied in studying the time evolution of random graphs.  相似文献   

16.
Gyrokinetics is widely applied in plasma physics. However, this framework is limited to weak turbulence levels and low drift-wave frequencies because high-frequency gyro-motion is reduced by the gyro-phase averaging. In order to test where gyrokinetics breaks down, Waltz and Zhao developed a new theory, called cyclokinetics [R. E. Waltz and Zhao Deng, Phys. Plasmas 20, 012507 (2013)]. Cyclokinetics dynamically follows the high-frequency ion gyro-motion which is nonlinearly coupled to the low-frequency drift-waves interrupting and suppressing gyro-averaging. Cyclokinetics is valid in the high-frequency (ion cyclotron frequency) regime or for high turbulence levels. The ratio of the cyclokinetic perturbed distribution function over equilibrium distribution function δf/F can approach 1.This work presents, for the first time, a numerical simulation of nonlinear cyclokinetic theory for ions, and describes the first attempt to completely solve the ion gyro-phase motion in a nonlinear turbulence system. Simulations are performed [Zhao Deng and R. E. Waltz, Phys. Plasmas 22(5), 056101 (2015)] in a local flux-tube geometry with the parallel motion and variation suppressed by using a newly developed code named rCYCLO, which is executed in parallel by using an implicit time-advanced Eulerian (or continuum) scheme [Zhao Deng and R. E. Waltz, Comp. Phys. Comm. 195, 23 (2015)]. A novel numerical treatment of the magnetic moment velocity space derivative operator guarantee saccurate conservation of incremental entropy.By comparing the more fundamental cyclokinetic simulations with the corresponding gyrokinetic simulations, the gyrokinetics breakdown condition is quantitatively tested. Gyrokinetic transport and turbulence level recover those of cyclokinetics at high relative ion cyclotron frequencies and low turbulence levels, as required. Cyclokinetic transport and turbulence level are found to be lower than those of gyrokinetics at high turbulence levels and low-Ω* values with stable ion cyclotron modes. The gyrokinetic approximation is found to break down when the density perturbation exceeds 20%, or when the ratio of nonlinear E×B frequency over ion cyclotron frequency exceeds 20%. This result indicates that the density perturbation of the Tokamak L-mode near-edge is not sufficiently large for breaking the gyro-phase averaging. For cyclokinetic simulations with sufficiently unstable ion cyclotron (IC) modes and sufficiently low Ω* ~10, the high-frequency component of the cyclokinetic transport can exceed that of the gyrokinetic transport. However, the low-frequency component of the cyclokinetic transport does not exceed that of the gyrokinetic transport. For higher and more physically relevant Ω* ?50 values and physically realistic IC driving rates, the low-frequency component of the cyclokinetic transport remains smaller than that of the gyrokinetic transport. In conclusion, the “L-mode near-edge short-fall” phenomenon, observed in some low-frequency gyrokinetic turbulence transport simulations, does not arise owing to the nonlinear coupling of high-frequency ion cyclotron motion to low-frequency drift motion.  相似文献   

17.
It is shown that particles of a specific chargee/m are confined in three dimensions by a high frequency electric quadrupole field with the potential?=c · U(t)· (x 2+y 2?2z 2). The confinement is mass selective. The theoretical predictions are verified by experiments with ions of different masses and with electrons. The mass selection, maximum number of stored charges and their mean life time in the field are measured. Furthermore the influence of a magnetic field on the motion of the charges is investigated.  相似文献   

18.
A nonlocal-in-time integro-differential equation is introduced that accounts for close coupling between transport and chemical reaction terms. The structure of the equation contains these terms in a single convolution with a memory function M?(t), which includes the source of non-Fickian (anomalous) behavior, within the framework of a continuous time random walk (CTRW). The interaction is non-linear and second-order, relevant for a bimolecular reaction A + BC. The interaction term ΓP A ?(s, t)?P B ?(s, t) is symmetric in the concentrations of A and B (i.e. P A and P B ); thus the source terms in the equations for A, B and C are similar, but with a change in sign for that of C. Here, the chemical rate coefficient, Γ, is constant. The fully coupled equations are solved numerically using a finite element method (FEM) with a judicious representation of M?(t) that eschews the need for the entire time history, instead using only values at the former time step. To begin to validate the equations, the FEM solution is compared, in lieu of experimental data, to a particle tracking method (CTRW-PT); the results from the two approaches, particularly for the C profiles, are in agreement. The FEM solution, for a range of initial and boundary conditions, can provide a good model for reactive transport in disordered media.  相似文献   

19.
The Influence of temperature in the range from 275 to 320 K on ESR spectra and magnetization m of ensembles of spherical gadolinium nanoparticles with the diameter from 89 to 18 nm was studied. The particles with d = 18 nm had a cubic face centered structure and no magnetic transition. At T > TC all particles were paramagnetic, and their g factors were g = 1.98 ± 0.02 irrespective of their size and structure. At T = TC the particles having 28 to 89 nm in size experienced a magnetic and orientation transition; at T < TC their m(H) dependences were described by the Langevin function, and the FMR lines broadened and shifted towards H = 0. FMR lines of the Gd particle ensembles showed a hysteresis behavior during magnetization reversal, which did not correlate with the coercivity of the particles. Dependences of the Gd nanoparticles FMR linewidth ΔH(T) changed proportionally to |TTC|.  相似文献   

20.
For a nonperiodic system, a bamboo Si1?x Ge x nanowire with axially degraded components, it is impossible to obtain its phonon dispersion relations through lattice dynamic or the first principle calculation. Therefore, we present a simple and available method to solve this problem. At first, the Si1?x Ge x nanowire with axially degraded component is divided into several sections according to its component distribution like bamboos’ sections formed in the growth process. For each section with a given x value, we constructed a pseudo-cell to calculate its phonon dispersion relations. Thermal conductances of junctions and of each section are then calculated by the phonon mismatch model and the phonon transmission probability with diffusive and ballistic portions. The dependences of thermal conductivity on the length of each section and the gradient of degraded component between sections are presented. We studied thermal conductivity dependence on temperature, length and diameter of the Si1?x Ge x nanowire with axially degraded component. And we found κ ~ l 0.8, in which the exponent 0.8 is ascribed to the competition between phonons ballistic and diffusive transport. Furthermore, thermal conductivities along axial (100), (110), and (111) directions are discussed in detail. The method provides a simple and available tool to study thermal conductivity of a non-period system, such as a quasiperiodic superlattice or a nanowire with axially degraded component.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号