首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
Zinc oxide nanoparticles (NanoZnO) uniformly dispersed in chitosan (CHIT) have been used to fabricate a hybrid nanocomposite film onto indium-tin-oxide (ITO) glass plate. Cholesterol oxidase (ChOx) has been immobilized onto this NanoZnO-CHIT composite film using physiosorption technique. Both NanoZnO-CHIT/ITO electrode and ChOx/NanoZnO-CHIT/ITO bioelectrode have been characterized using Fourier transform-infrared (FTIR), X-ray diffraction (XRD), cyclic voltammetry (CV), scanning electron microscopy (SEM) and electrochemical impedance spectroscopy (EIS) techniques, respectively. The ChOx/NanoZnO-CHIT/ITO bioelectrode exhibits linearity from 5 to 300 mg dl−1 of cholesterol with detection limit as 5 mg dl−1, sensitivity as 1.41 × 10−4 A mg dl−1 and the value of Michaelis-Menten constant (Km) as 8.63 mg dl−1. This cholesterol biosensor can be used to estimate cholesterol in serum samples.  相似文献   

2.
An amperometric mediated glucose biosensor has been developed based on a sol–gel derived carbon composite material. Glucose oxidase and the mediator vinylferrocene have been immobilised within the porous, rigid and organically modified silicate network in the composite material. The organic group in the silicate network controls the hydrophobicity of the electrode surface and thus limits the wettability of the electrode surface. Various important fabrication factors controlling the biosensor performance have been investigated systematically. The glucose biosensor can be renewed easily in a reproducible manner by a simple polishing step and it has a long operational lifetime. Applicability of the biosensor has been demonstrated in real samples and the results obtained by this biosensor corroborate well with a classical UV spectrophotometric technique.  相似文献   

3.
Cholesterol oxidase (ChOx) and cholesterol esterase (ChEt) have been covalently immobilized onto tetraethylorthosilicate (TEOS) sol-gel films. The tetraethylorthosilicate sol-gel/ChEt/ChOx enzyme films thus prepared have been characterized using scanning electron microscopic (SEM), UV-vis spectroscopic, Fourier-transform-infrared (FTIR) spectroscopic and amperometric techniques, respectively. The results of photometric measurements carried out on tetraethylorthosilicate sol-gel/ChEt/ChOx reveal thermal stability up to 55 °C, response time as 180 s, linearity up to 780 mg dL−1 (12 mM), shelf life of 1 month, detection limit of 12 mg dL−1 and sensitivity as 5.4 × 10−5 Abs. mg−1 dL−1.  相似文献   

4.
Cobalt–silicon mixed oxide materials (Co/Si=0.111, 0.250 and 0.428) were synthesised starting from Co(NO3)2·6H2O and Si(OC2H5)4 using a modified sol–gel method. Structural, textural and surface chemical properties were investigated by thermogravimetric/differential thermal analyses (TG/DTA), XRD, UV–vis, FT-IR spectroscopy and N2 adsorption at −196 °C. The nature of cobalt species and their interactions with the siloxane matrix were strongly depending on both the cobalt loading and the heat treatment. All dried gels were amorphous and contained Co2+ ions forming both tetrahedral and octahedral complexes with the siloxane matrix. After treatment at 400 °C, the sample with lowest Co content appeared amorphous and contained only Co2+ tetrahedral complexes, while at higher cobalt loading Co3O4 was present as the only crystalline phase, besides Co2+ ions strongly interacting with siloxane matrix. At 850 °C, in all samples crystalline Co2SiO4 was formed and was the only crystallising phase for the nanocomposite with the lowest cobalt content. All materials retained high surface areas also after treatments at 600 °C and exhibited surface Lewis acidity, due to cationic sites. The presence of cobalt affected the textural properties of the siloxane matrix decreasing microporosity and increasing mesoporosity.  相似文献   

5.
Nanostructured iron–titanium mixed oxides with different Fe/Ti ratios were prepared by sol–gel methods under different preparative conditions. When equal molar amounts of Fe and Ti ions were employed, the product calcined at 500 °C showed an X-ray diffraction pattern that resembles Fe2Ti3O9. On the other hand, lower Fe/Ti ratios favored the formation of Fe2TiO5 while higher ratios resulted in free α-Fe2O3 and TiO2. Besides the effect of the Fe/Ti ratio, the composition of the final product was dependent on the preparative conditions and the calcination temperature. Enhancing the gelation process by heating or by employing an acid catalyst favored the formation of Fe2TiO5 at relatively low temperatures. Compared with the corresponding pure oxides, the prepared iron–titanium mixed oxides showed modified textural characteristics which were also dependent on the composition and the calcination temperature. The mixed oxides showed higher catalytic activity in the oxidation of methanol than their corresponding pure oxides with a noticeable enhanced oxidation potential forming methyl formate and carbon dioxide.  相似文献   

6.
Organic–inorganic composite mono-valent cation selective membranes (MCSMs) were prepared by sol–gel under acidic conditions, in which sulfonic acid groups were introduced at the inorganic segment. Studies on physicochemical and electrochemical properties revealed their excellent mechanical, thermal, and oxidative stabilities, high conductivity, ion-exchange capacity, permselectivity for mono-valent cations, ionic diffusion and water transport number. These properties suggested the suitability of MCSMs, especially Si-65%, for electro-separation of Na+ from Ca2+, Mg2+, and Fe3+. The effect of electrolyte solution on the characteristics of the current–voltage (iv) curve in MCSM was studied based on the concentration polarization. Electro-transport of different ions in terms of plateau length and concentration profiles for different ions in the solution phase, diffusion boundary layer and membrane phase were presented. Information obtained from iv curve analysis were validated by electrodialysis (ED) experiments for individual or mixed electrolyte solutions. Electro-transport efficiency and separation factor of different ions for MCSM and Nafion117 (N117) membranes were compared, which suggested suitability of MCSMs for separating cations.  相似文献   

7.
SiO2–Ag wires were synthesized by a sol–gel technique. A two step approach was followed, focusing mainly on the effect of acid concentration on the first stage and processing temperature on the second. This acid-catalyzed reaction on the first stage yielded SiO2–AgCl wires with diameters as low as 800 nm average, and lengths ranging up to 100 μm, as determined by LV-SEM and TEM. A thermal treatment at different temperatures on the second step, under H2 atmosphere, yields silica–silver unidirectional structures. The chemical composition of these structures was determined by EDS, indicating the presence of Si, O and Ag. The transformation of the wires as a function of temperature under reducing atmosphere was followed by electron microscopy analysis. At 400 °C and above the silica starts to cover the reduced silver while maintaining the unidirectional conformation, suggesting a tendency to form silver wires covered by a silica layer.  相似文献   

8.
A Pb(Zr,Ti)O3 precursor gel made from a sol prepared using 1,1,1,-tris(hydroxymethyl)ethane, lead acetate and zirconium and titanium propoxides, stabilised with acetylacetone, was analysed using TGA–FTIR analysis. Decomposition under nitrogen (N2) gave rise to evolved gas absorbance peaks at 215 °C, 279 °C, 300 °C and 386 °C, but organic vapours continued to be evolved, along with CO2 and CO until 950 °C. The final TGA step in N2 is thought to relate to decomposition of an intermediate carbonate phase and the final elimination of residues of triol or acetylacetonate species which form part of the polymeric gel structure. By contrast, heating in air promoted oxidative pyrolysis of the final organic groups at ≤450 °C. In air, an intermediate carbonate phase was decomposed by heating at 550 °C, allowing Pb(Zr,Ti)O3 to be produced some 400 °C below the equivalent N2 decomposition temperature.  相似文献   

9.
A new class of thermally robust sol–gel polymers have been prepared from the disilaoxacyclopentane derivative 1 by ring‐opening polymerization to form nonshrinking polysiloxanes. This reaction, which does not need solvent or water, can be used for, amongst other things, the encapsulation of an electronic microchip.  相似文献   

10.
《Electroanalysis》2006,18(17):1696-1702
A novel electrochemical immunosensor for human chorionic gonadotrophin (hCG) was proposed by immobilization of hCG in gold nanoparticles doped three‐dimensional (3D) sol‐gel matrix and an interfacial competitive immunoreaction. The 3D organized composite structure was prepared by assemble of gold nanoparticles into a hydrolyzed (3‐mercaptopropyl)‐trimethoxysilane sol‐gel matrix, which showed good biocompatibility. After the interfacial competitive immunoreaction the formed HRP‐labeled immunoconjugate showed good enzymatic activity for the oxidation of o‐phenylenediamine by H2O2. With a competitive format, a method comprising of o‐phenylenediamine‐H2O2‐immobilized HRP labeled hCG immunoconjugate system for immunoassay of hCG from 5.0 to 30.0 mIU mL?1 was developed. The immunosensor showed good precision, high sensitivity, acceptable stability and reproducibility and could be used for detection of hCG in human serum with the consistent results in comparison with those obtained by a commercial analyzer.  相似文献   

11.
《中国化学会会志》2017,64(11):1326-1332
Different bismuth molybdate catalysts for the selective oxidation of propylene to acrolein were prepared by the sol–gel method, starting from bismuth nitrate, ammonium molybdate, and citric acid. The influence of pH value and theoretical molar Bi/Mo atomic ratio on the complexation and gelation is surveyed using IR spectroscopy, X‐ray diffraction, and BET. Their catalytic activities for the conversion propylene to acrolein are examined.  相似文献   

12.
A trans-4-(p-N,N-dimethylaminostyryl)-N-vinylbenzylpyridinium chloride (vbDMASP) fluorescence probe was optimized in ground and excited state as a function of change in the microenvironment polarity, using the Amsol HyperChem program package. In the calculations, protic and aprotic solvents were used. On this basis a change in the molecule geometry after excitation, depending on the surrounding solvent, was determined.Absorption and steady-state fluorescence spectra of vbDMASP in the solvent of different polarity and in the model water–glycerol solutions were also recorded. On the basis of Stokes’ shift change with the Onsager polarity scale a change in the dipole moment of the probe during transition from ground to excited state, in protic and aprotic solvents was determined.Since during the sol–gel transition of tetraethylorthosilane in the acidic environment both polarity and viscosity of the microenvironment change the vbDMASP probe was applied and fluorescence time-resolved measurements were done. On this basis the correlations between the results of time-resolved measurements for the multichromophoric probe applied in the gelation process and molecular optimization data are discussed.  相似文献   

13.
Isothermal oxidation behavior of chromium with and without nanometric sol-gel CeO2 coating is studied at 1000℃ in air. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) are used to examine the surface morphology and microstructure of their oxide films. It is found that ceria coating greatly improves the anti-oxidation property of chromium. Laser Raman spectrometer and X-ray diffraction spectrometer (XRD) are also used to study the stress level in oxide films formed on ceria-coated and ceria-free Cr. The difference in oxidation behavior is mainly attributed to the fact that ceria greatly reduces the growth speed and grain size of Cr2O3 film, and this fine grain-sized Cr2O3 film probably has better high temperature plasticity, i.e. oxide film can relieve parts of compressive stress by means of creeping. XRD and Raman testing results both show the stress declination due to nano-CeO2 application, and their deviation is analyzed conceming to the rare earth effect.  相似文献   

14.
Photopolymerized silica sol–gel monoliths, functionalized with boronic acid ligands, have been developed for protein and peptide separations in polydimethylsiloxane microfluidic devices. Pore size characterization of the monoliths was carried out with SEM, image analysis, and differential scanning calorimetry to evaluate both the micron‐sized macropores and the nanometer‐sized mesopores. Monoliths were functionalized with boronic acid using three different immobilization techniques. Batch experiments were conducted to determine the capacity of the monoliths and selectivity toward cis‐diol‐containing compounds. Conalbumin was used as a model glycoprotein, and a tryptic digest of the glycoprotein horseradish peroxidase was used as a peptide mixture to demonstrate proof‐of‐concept extraction of glycoproteins and glycopeptides by the monoliths formulated in polydimethylsiloxane microfluidic chips. For proteins, fluorescence detection was used, whereas the peptide separations employed off‐line analysis using MALDI‐MS.  相似文献   

15.
A series of highly water-soluble organo-silica nanoparticles, ranging from 2 to 10 nm in diameter, were synthesized by the cohydrolysis and copolycondensation reactions. ω-methoxy(polyethyleneoxy)propyltrimethoxysilane (PEG6-9) and hydroxymethyltriethoxysilane (HMTEOS) mixtures were catalyzed by sodium hydroxide in the presence of surfactant benzethonium chloride (BTC) with various ratios of PEG6-9/HMTEOS at room temperature. The synthesized organo-silica nanoparticles possess a core–shell structure with a core of organo-silica resulting from HMTEOS and a monolayer shell of PEG6-9. The chemo-physical characteristics of the particles were studied by gel permeation chromatography (GPC), Fourier transform infrared (FTIR) spectroscopy, 29Si nuclear magnetic resonance (NMR), dynamic light scattering (DLS), transmission electron microscopy (TEM), and thermogravimetric analysis (TGA). The molecular weight and particle size of the particles increased with increasing HMTEOS molar ratios. The richest HMTEOS composition for the water-soluble particles was found to be HMTEOS:PEG6-9 = 80:20, where the particles had a 6 nm diameter core and a 0.8 nm thick shell. We propose that these water-soluble organo-silica nanoparticles will be suitable for biomedical applications.  相似文献   

16.
Amperometric enzyme biosensors for the determination of acetylcholine (ACh) and choline (Ch) have been described. For the fabrication of the biosensors, N-acetylaniline (nAN) was first electropolymerized on a Pt electrode surface to be served as a permselective layer to reject interferences. Bovine serum albumin (BSA) and choline oxidase (CHOD) were co-immobilized in a zinc oxide (ZnO) sol–gel membrane on the above modified Pt electrode for a Ch sensor, or CHOD, acetylcholinesterase (AChE) and BSA immobilized together for an ACh/Ch sensor. The poly (N-acetylaniline) (pnAN) film was the first time used for an ACh/Ch sensor and found to have excellent anti-interference ability, and the BSA in the sol–gel can improve the stability and activity of the enzymes. Amperometric detection of ACh and Ch were realized at an applied potential of +0.6 V versus SCE. The resulting sensors were characterized by fast response, expanded linear range and low interference from endogenous electroactive species. Temperature and pH dependence and stability of the sensor were investigated. The optimal ACh/Ch sensor gave a linear response range of 1.0 × 10−6 to 1.5 × 10−3 M to ACh with a detection limit (S/N = 3) of 6.0 × 10−7 M and a linear response range up to 1.6 × 10−3 M to Ch with a detection limit of 5.0 × 10−7 M. The biosensor demonstrated a 95% response within less than 10 s.  相似文献   

17.
The sol–gel transition mechanism of a thermoreversible hydrogel composed of a copolymer comprising poly(N-isopropylacrylamide) and poly(ethylene glycol) (PNIPAAm–PEG) was studied by NMR. The 1H– and 13C–NMR spectra measured on a PNIPAAm–PEG solution in 99.9% D2O showed a remarkable line width broadening of the PNIPAAm block of more than that of the PEG block, during thermally induced hydrogel formation. This result suggested that the mobility of the PNIPAAm block is more restricted than that of the PEG block during gelation. A crosslinked polymer network formation was ascertained by a sudden reduction in the spin-lattice relaxation time (T1) of the residual HDO proton during gelation. The temperature dependency of the T1 values for the PNIPAAm and PEG blocks revealed that the microscopic condition of the PNIPAAm block in water was drastically changed during gelation, while that of the PEG block was unchanged. The experimental results from NMR supported the following gelation mechanism; that an aggregation of PNIPAAm blocks in the separate copolymers caused by hydrophobic interaction forms crosslinking points to give an infinite three-dimensional network structure. The hydrated PEG chains in the copolymers provide the network with a swelling property in water, and prevent the aggregation from causing a macroscopic phase separation.  相似文献   

18.
An optical pH sensor was developed based on the fluorophor, fluoresceinamine isomer II (FA), covalently immobilized in a sol–gel matrix. This sol–gel matrix was created by the copolymerization of two precursors, methyltriethoxysilane (MTES) and 3-glycidoxypropyltrimethoxysilane (GPTMS), in an ethanolic solution. Fluoresceinamine was covalently bound to the glycidoxypropyl chain group of GPTMS, thereby preventing it from leaching. Moreover, the immobilization of the fluoresceinamine also extended its linear detection range. The sensor showed good repeatability, a short response time of less than 8 s, high long-term stability and no temperature effect in the biologically relevant range. In the pH range of 4–10, the sensor was very sensitive and its linear range was found to be between pH 6 and 9 (R2 = 0.995).  相似文献   

19.
An ultrathin platinum film is fabricated on a nanoporous gold (NPG) scaffold through a catalytic chemical deposition method. The morphology and active surface area of the deposited Pt film, which will greatly influence the electro-catalytic properties of the catalyst, can be controlled by adjusting the deposition condition. Compared with bare NPG and high Pt loaded NPG, the performances of methanol electro-oxidation on the low-Pt-content bimetallic film are greatly improved, both in its catalytic current enhancement and signal stability. The best condition for methanol oxidation can be achieved when the area ratio of deposited Pt and uncovered Au was 3:1.  相似文献   

20.
The effect of polymer–filler interaction on solvent swelling and dynamic mechanical properties of the sol–gel derived acrylic rubber (ACM)/silica, epoxidized natural rubber (ENR)/silica, and poly (vinyl alcohol) (PVA)/silica hybrid nanocomposites has been described for the first time. Tetraethoxysilane (TEOS) at three different concentrations (10, 30, and 50 wt %) was used as the precursor for in situ silica generation. Equilibrium swelling of the hybrid nanocomposites in respective solvents at ambient condition showed highest volume fraction of the polymer in the swollen gel in PVA/silica system and least in ACM/silica, with ENR/silica recording an intermediate value. The Kraus constant (C) also followed a similar trend. In dynamic mechanical analysis, the storage modulus dropped at higher strain (>1%), which indicated disengagement of polymer segments from the filler surfaces. This drop was maximum in ACM/silica, intermediate in ENR/silica, and minimum in PVA/silica, both at 50 and 70 °C. The drop in modulus with theoretical volume fraction of silica (ϕ) was interpreted with the help of a Power law model ΔE′ = a1ϕ, where a1 was a constant and b1 was primarily a filler attachment parameter. Strain dependence of loss modulus was observed in ACM/silica hybrid nanocomposites, while ENR/silica and PVA/silica nanocomposites showed almost strain‐independent behavior. The storage modulus showed sharp increase with increasing frequency in ACM/silica system, while that was lower in both ENR/silica (at higher frequency) and PVA/silica systems (in the entire frequency spectrum). The increase in modulus with ϕ also followed similar model ΔE′ = a2ϕ proposed in the strain sweep mode. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 2399–2412, 2005  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号