首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Shape memory polymers (SMPs) are a class of smart materials which can recover from a deformed shape to their original shape by a certain external stimulus. To predict the deformation behaviors of SMPs, different constitutive models have been developed in the last few years. However, most of the constitutive models need many parameters to be determined by specific experiments and complex calibration processes. This drawback has limited their application in promoting the development of SMPs. Thus, it is imperative to develop a new constitutive model which is not only accurate, but also relatively simple. In our work, a novel fractional viscoelastic constitutive model coupling with time‐temperature superposition principle is first proposed for SMPs. Then, frequency sweep and temperature sweep experiments are conducted to determine the parameters of the model. Finally, the shape memory free recovery experiments are carried out to validate the predictive capability of the developed model. By comparing the predicted results with experimental data, we find that though our model has only eleven parameters in total, it could capture the thermomechanical behaviors of SMPs in very good agreement with experimental results. We hope the proposed new model provide researchers with guidelines in designing and optimizing of SMP applications. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018 , 56, 1125–1134  相似文献   

2.
Polymer networks showing a thermally induced shape‐memory effect were prepared through the crosslinking of oligo(?‐caprolactone)dimethacrylates under photocuring with or without an initiator. The influence of the molecular weight of the oligo(?‐caprolactone)dimethacrylates and the initiator concentration on the macroscopic properties of the polymer networks was investigated. The isothermal and nonisothermal crystallization behavior of the polymer networks was evaluated as a basic principle of the functionalization process. Shape‐memory properties such as the strain fixity and strain recovery rate were quantified with cyclic thermomechanical tensile experiments for different maximum elongations. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 1369–1381, 2005  相似文献   

3.
Bilayer polymers that consist of two epoxy dual‐shape memory polymers of well‐separated glass transition temperatures have been synthesized. These bilayer epoxy samples exhibit a triple‐shape memory effect (TSME) with shape fixities tailorable by changing the ratio between the two layers. The triple‐shape fixities of the bilayer epoxy polymers can be explained by the balance of stress between the two layers. Based on this work, it is believed that the following three molecular design criterions should be considered in designing triple‐shape memory polymers with optimum TSME: 1) well‐separated thermal transitions, 2) a strong interface, and 3) an appropriate balance of moduli and relative ratios between the layers (or microphases).

  相似文献   


4.
Multistimuli‐responsive shape‐memory polymers are highly desirable in various applications, and numerous modes have been developed in recent years. However, most of them need to reprogram before they are ready to respond to another stimulus while one is triggered. Here, a new strategy is developed to achieve dual‐stimuli‐responsive triple‐shape memory with non‐overlapping effect in one programming cycle. Here, a series of poly(l ‐lactide)‐poly(tetramethylene oxide) glycol copolymers (PLA‐PTMEG‐A) is prepared by selected dangling photoresponsive anthracene moieties on the crystalline PTMEG backbone. The architectures of the copolymers are well‐controlled in order to keep a good balance between the crystallinity of the soft segment and the mobility of the anthracene moieties. Thus, PLA‐PTMEG‐A's can respond to heat and light with non‐overlapping effect. The thermally‐induced shape‐memory effect (TSME) is realized by the crystallization–melting transition of PTMEG soft segments, while the light‐induced shape‐memory effect (LSME) is achieved by the reversible photodimerization of anthracene groups. In view of the non‐overlapping effect of TSME and LSME in the copolymers, a triple‐shape‐memory effect triggered by dual‐stimuli is realized in one programming and recovery cycle.

  相似文献   


5.
In this work, a novel soft shape memory polymer nanocomposite derived from a bacterial medium‐chain‐length polyhydroxyalkanoate, poly(3‐hydroxyoctanoate‐co‐3‐hydroxyundecenoate) (PHOU), used to form a covalent network grafted with polyhedral oligomeric silsesquioxane (POSS), a crystallizable inorganic–organic hybrid nanofiller, was prepared. The PHOU–POSS nanocomposite, PHOU–POSSw‐net [w (= POSS content, wt %) = 0, 20, 25, 30, and 38], is a completely amorphous elastomer (w ≤ 20) or contains POSS nanocrystals embedded in the amorphous PHOU matrix (w ≥ 25). The hybrid nanostructure of PHOU–POSSw‐net (w ≥ 25) is featured by its reconfigurability, based on aggregation and disaggregation of POSS covalently connected to the PHOU network, which enables excellent shape fixing and recovery. Furthermore, it exhibits soft and elastomeric mechanical properties even in the fixed state. Taking advantage of the shape memory ability as well as the softness in the fixed state, we demonstrate microscale dynamic surface topography of PHOU–POSSw‐net. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2012  相似文献   

6.
In this study, three kinds of L ‐lactide‐based copolymers, poly(lactide‐co‐glycolide) (PLGA), poly(lactide‐co‐p‐dioxanone) (PLDON) and poly(lactide‐co‐caprolactone) (PLC), were synthesized by the copolymerization of L ‐lactide (L) with glycolide (G), or p‐dioxanone (DON) or ε‐caprolactone (CL), respectively. The copolymers were easily soluble in common organic solvents. The compositions of the copolymers were determined by 1H‐NMR. Thermal/mechanical and shape‐memory properties of the copolymers with different comonomers were compared. Moreover, the effect of the chain flexibility of the comonomers on thermal/mechanical and shape‐memory properties of the copolymers were investigated. The copolymers with appropriate lactyl content showed good shape‐memory properties where both the shape fixity rate (Rf)and the shape recovery rate (Rr) could exceed 95%. It was found that the comonomers with different flexible molecular chain have different effects on their thermal/mechanical and shape‐memory properties. Among them, PLGA has the highest mechanical strength and recovery rate while PLC copolymer has high recovery rate when the lactyl content exceeded 85% and the lowest transition temperature (Ttrans). Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

7.
In this article, we show that given a thermoresponsive shape memory polymer, it is possible to alter a number of its properties, such as the recovery temperature, shape fixity ratio, maximum recovery stress, and final recovery stress (and even a right combination of some of them, e.g., the maximum recovery stress and final recovery stress), simply by means of selecting the programming temperature to achieve optimized performance. Some concerns for the implementation in real engineering practice are also discussed. Although the focus is on the case of a fixed maximum strain in programming, alternative programming approaches can be investigated in a similar way for optimized performance as well. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

8.
Shape memory polymers (SMPs) and shape memory polymer composites have drawn considerable attention in recent years for their shape memory effects. A unified modeling approach is proposed to describe thermomechanical behaviors and shape memory effects of thermally activated amorphous SMPs and SMP‐based syntactic foam by using the generalized finite deformation multiple relaxation viscoelastic theory coupled with time–temperature superposition property. In this paper, the thermoviscoelastic parameters are determined from a single dynamic mechanical analysis temperature sweep at a constant frequency. The relaxation time strongly depends on the temperature and the variation follows the time–temperature superposition principle. The horizontal shift factor can be obtained by the Williams–Landel–Ferry equation at temperatures above or close to the reference temperature (Tr), and by the Arrhenius equation at temperatures below Tr. As the Arruda–Boyce eight‐chain model captures the hyperelastic behavior of the material up to large deformation, it is used here to describe partial material behaviors. The thermal expansion coefficient of the material is regarded as temperature dependent. Comparisons between the model results and the thermomechanical experiments presented in the literature show an acceptable agreement. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

9.
Composites with excellent water‐induced shape‐memory effects (SMEs) were successfully synthesized by first using clay as the SME‐activating phase and thermoplastic polyurethane (TPU) as the matrix. Naturally abundant clay was grafted with poly(methacrylic acid) (PMAA) to improve particle interactions, which allowed for the formation of strong percolation networks in the composites, determined by swelling tests and dynamic mechanical analysis in combination with theoretical modeling. This led to significant improvements of the polymer modulus and high water absorptions, causing reversible modulus changes of up to 30 times from the wet to the dry condition. The results from cyclic wetting‐drying‐stretching tests showed the TPU–clay composite containing 10.4 vol % PMAA‐grafted clay exhibited the best SMEs among the composites investigated, with the shape fixity and shape recovery ratios being 82% and 91%, respectively. Besides SMEs, these new polymer–clay composites were also pH‐sensitive and mechanically adaptive upon exposure to water. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2013 , 51, 1513–1522  相似文献   

10.
Stimuli‐responsive ABC triblock copolymers with three segments with different phase‐separation temperatures were synthesized via sequential living cationic copolymerization. The triblock copolymers exhibited sensitive thermally induced physical gelation (open association) through the formation of micelles. For example, an aqueous solution of EOVE200b‐MOVE200b‐EOEOVE200 [where EOVE is 2‐ethoxyethyl vinyl ether, MOVE is 2‐methoxethyl vinyl ether and EOEOVE is 2‐(2‐ethoxy)ethoxyethyl vinyl ether; the order of the phase‐separation temperatures was poly(EOVE) (20 °C) < poly(EOEOVE) (41 °C) < poly(MOVE) (70 °C)] underwent multiple reversible transitions from sol (<20 °C) to micellization (20–41 °C) to physical gelation (physical crosslinking, 41–64 °C) and, finally, to precipitation (>64 °C). At 41–64 °C, the physical gel became stiffer than similar diblock or ABA triblock copolymers of the same molecular weight. Furthermore, the ABC triblock copolymers exhibited Weissenberg effects in semidilute aqueous solutions. In sharp contrast, another ABC triblock copolymer with a different arrangement, EOVE200b‐EOEOVE200b‐MOVE200, scarcely exhibited any increase in viscosity above 41 °C. The temperatures of micelle formation and physical gelation corresponded to the phase‐separation temperatures of the segment types in the ABC triblock copolymer. No second‐stage association was observed for AB and ABA block copolymers with the same thermosensitive segments found in their ABC counterparts. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2601–2611, 2004  相似文献   

11.
In this study a series of hyperbranched modified shape‐memory polymers were subjected to constrained shape recoveries in order to determine their potential use as thermomechanical actuators. Materials were synthesized from a diglycidyl ether of bisphenol A as base epoxy and a polyetheramine and a commercial hyperbranched poly(ethyleneimine) as crosslinker agents. Hyperbranched polymers within the structure of the shape‐memory epoxy polymers led to a more heterogeneous network that can substantially modify mechanical properties. Thermomechanical and mechanical properties were analyzed and discussed in terms of the content of hyperbranched polymer. Shape‐memory effect was analyzed under fully and partially constrained conditions. When shape recovery was carried out with fixed strain a recovery stress was obtained whereas when it was carried out with a constraining stress the material performs mechanical work. Tensile tests at TgE′ showed excellent values of stress and strain at break (up to 15 MPa and almost 60%, respectively). Constrained recovery performances revealed rapid recovery stress generation and unusually high recovery stresses (up to 7 MPa) and extremely high work densities (up to 750 kJ/m3). The network structure of shape‐memory polymers was found to be a key factor for actuator‐like applications. Results confirm that hyperbranched modified‐epoxy shape memory polymers are good candidates for actuator‐like shape‐memory applications. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 1002–1013  相似文献   

12.
Shape memory polymers (SMP) can be deformed to a stable, temporary shape and recovered to their original shape by applying a stimulus. These networks rely on the presence of two types of net points to establish their permanent and temporary shapes. Classical strategies to stabilize temporary shapes rely on cooling below Tg/Tm where macromolecules become pinned in a stressed state. Recovery of the SMP usually involves heating to above the transition temperature where the permanent shape is remembered. Employing reversible binding groups (RBGs) in SMPs has emerged as an alternative strategy for stabilizing temporary shapes or imparting recyclability of the permanent shape. The use of dynamic chemistry often engenders additional functionality such as intrinsic self-healing characteristics or alternative shape recovery triggering strategies. SMPs bearing both supramolecular and covalent RBGs will be reviewed with an emphasis on hydrogen bonding, ionic interactions, metal–ligand coordination, and dynamic covalent exchange and addition reactions. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 1340–1364  相似文献   

13.
A siloxane‐containing diphenol is synthesized from 1,1,3,3‐tetramethyldisiloxane and o‐allylphenol, followed by the Mannich condensation with aniline, methylamine, and formaldehyde yielding two siloxane‐containing benzoxazines. The onset polymerization temperature of aniline‐based benzoxazine is higher than that of the methylamine counterpart. The dynamic mechanical properties of the polybenzoxazines depend on the structure of the starting primary amines. Both polybenzoxazines exhibit one‐way dual‐shape memory behavior in response to changes in temperature, and they show excellent shape fixity ratios in bending, tension, and tensile stress–strain tests, high shape recovery ratios in bending and tension tests, but relatively low shape recovery ratios in tensile stress–strain test. The network chain segments including the alkylsiloxane units serve as a thermal control switch based on the glass transition temperatures (39 and 53 °C) for the polybenzoxazines. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 1255–1266  相似文献   

14.
In this work, the stress recovery behavior of shape memory polyurethane (SMPU) fiber was investigated. The as‐spun SMPU fibers were subjected to various programing‐recovery conditions. It was observed that recovering at 100 °C generated higher recovery stress than recovering at 150 °C. It was also found that, while hot‐drawn programed fiber has higher recovery stress than cold‐drawn programed fiber if recovered at 100 °C, cold‐drawn programed fiber has higher stabilized recovery stress than hot‐drawn programed counterpart when recovered at 150 °C. A morphological model was proposed based on the results from differential scanning calorimetry, Fourier transform infrared spectrometry, and X‐ray diffraction to understand the physics behind the different stress recovery behaviors. It is found that SMPU experiences different phase transitions and phase separations under different programing and stress recovery conditions. It is concluded that the two sequential phase separations taking place at 100 and 150 °C are primarily responsible for the differences in the stress recovery behavior. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014 , 52, 1429–1440  相似文献   

15.
Xyloglucan is a natural polysaccharide having a cellulose‐like backbone and hydroxyl groups‐rich side‐chains. In its native form the polymer is water‐soluble and forms gel only in presence of selected co‐solutes. When a given fraction of galactosyl residues are removed by enzymatic reaction, the polymer acquires the ability to form a gel in aqueous solution at physiological temperatures, a property of great interest for biomedical/pharmaceutical applications. This work presents data on the effect of a temperature increase on degalactosylated xyloglucan dispersed in water at concentration low enough not to run into macroscopic gelation. Results obtained over a wide interval of length scales show that, on increasing temperature, individual polymer chains and pre‐existing clusters self‐assemble into larger structures. The process implies a structural rearrangement over a few nanometers scale and an increase of dynamics homogeneity. The relation of these findings to coil‐globule transition and phase separation is discussed. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 1727–1735  相似文献   

16.
Research in the field of liquid crystalline polymers has recently witnessed the introduction of liquid crystalline hydrogels. Here, we report the synthesis and characterization of a new liquid crystalline network featuring elastomeric softness, water‐swelling and shape memory characteristics. By comparing with a nonmesogenic network prepared using the same procedure, we reveal structure–property relationships of the liquid crystalline and crystalline polymer networks. Wide angle and small angle X‐ray scattering studies were used to examine the liquid crystalline ordering in both dry and hydrated states. Such ordering was found to be related to the observed shape memory and actuation (two‐way shape memory) properties and these phenomena are highlighted with demonstrations of shape change in response to heat and water stimuli. This study provides insight into the mechanisms affecting the shape evolution of water activated anisotropic liquid crystalline hydrogels and enables the future design of materials or devices for a variety of applications such as biomaterials interacting with body fluids in a hydrated state. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 38–52  相似文献   

17.
We present an experimental and modeling study of the effect of programming conditions on the shape-memory behaviors of amorphous thermoplastic polymers. Experimentally we measure the influence of deformation temperature, strain rate and relaxation time on the thermomechanical properties and shape-memory response of poly(para-phenylene), which is a stiff and strong aromatic thermoplastic. To understand the underlying mechanism, we develop a viscoelastic model, which contains multiple discrete relaxation processes with broad distribution of relaxation time. The model parameters of the relaxation spectrum are obtained from the master curve of small strain–stress relaxation tests using time-temperature superposition. The model predictions show good agreement with experimental observations, including the stress response and shape-memory response under various conditions. We applied the model to study the effect of the programming conditions on the shape recovery performance. The results show that the relaxation modulus at the end of the programming process was a predictor of the recovery speed and recoverable strain ratio. This provides a design metric to optimize the shape programming process for shape recovery. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 1405–1414  相似文献   

18.
The effects of hydrophobic chain end groups on the cloud points of thermo‐sensitive water‐soluble polystyrenics were investigated. Well‐defined poly (4‐vinylbenzyl methoxytris(oxyethylene) ether) (PTEGSt) and poly(α‐hydro‐ω‐(4‐vinylbenzyl)tetrakis(oxyethylene)) (PHTrEGSt) were prepared by nitroxide‐mediated radical polymerization using α‐hydrido alkoxyamine initiators including two monomer‐based initiators. The polymers were reduced with (n‐Bu)3SnH to replace the alkoxyamine end group with hydrogen. In the studied molecular weight range (Mn,GPC = 3000 to 28,000 g/mol), we found that the hydrophobic end groups decreased the cloud point by 1–20 °C depending on the molecular weight and the largest depression was observed at the lowest molar mass. The cloud points of PTEGSt and PHTrEGSt with two hydrophobic end groups, phenylethyl and alkoxyamine, exhibited a monotonic increase with the increase of molecular weight. For polymers with only one hydrophobic end group, either phenylethyl or alkoxyamine, the cloud point initially increased with the increase of molecular weight but leveled off/decreased slightly with further increasing molar mass. For polymers with essentially no end groups, the cloud point decreased with the increase of chain length, which represents the “true” molecular weight dependence of the cloud point. The observed molecular weight dependences of the cloud points of polystyrenics with hydrophobic end group(s) are believed to result from the combined end group effect and “true” molecular weight effect. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3707–3721, 2007  相似文献   

19.
A new theoretical approach based on the modified three‐element Eyring‐Halsey model was developed for the derivation of an equation describing the thermally induced recovery of predeformed and crystallized crosslinked polymers. The proposed approach takes into account the influence of crystallizable covalent network and of entangled slipped molecular chains. Modeling of thermally induced shape‐memory (SM) recovery strain and SM recovery rate detected at constant heating rate has been successfully performed for nearly linear and two short‐chain branched polyethylenes, which were crosslinked by peroxide. The values of material constants determined by fitting agree with the estimations existing in literature. Fitting results have shown that increase of degree of branching and crosslink density accompanied with reducing crystallinity results in increasing contribution of the entangled slipped chains to the total stored SM strain. The physical sense of main fitting parameters and their dependences on the material constants such as crystallinity are discussed. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014 , 52, 815–822  相似文献   

20.
Stimuli‐responsive hydrogels are continuing to increase in demand in biomedical applications. Occluding a blood vessel is one possible application which is ideal for a hydrogel because of their ability to expand in a fluid environment. However, typically stimuli‐responsive hydrogels focus on bending instead of radial uniform expansion, which is required for an occlusion application. This article focuses on using an interdigitated electrode device to stimulate an electro‐responsive hydrogel in order to demonstrate a uniform swelling/deswelling of the hydrogel. A Pluronic‐bismethacrylate (PF127‐BMA) hydrogel modified with hydrolyzed methacrylic acid, in order to make it electrically responsive, is used in this article. An interdigitated electrode device was manufactured containing Platinum electrodes. The results in this paper show that the electrically biased hydrogels deswelled 230% more than the non‐biased samples on average. The hydrogels deswelled uniformly and showed no visual deformations due to the electrical bias. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2013 , 51, 1523–1528  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号