首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Bilayer polymers that consist of two epoxy dual‐shape memory polymers of well‐separated glass transition temperatures have been synthesized. These bilayer epoxy samples exhibit a triple‐shape memory effect (TSME) with shape fixities tailorable by changing the ratio between the two layers. The triple‐shape fixities of the bilayer epoxy polymers can be explained by the balance of stress between the two layers. Based on this work, it is believed that the following three molecular design criterions should be considered in designing triple‐shape memory polymers with optimum TSME: 1) well‐separated thermal transitions, 2) a strong interface, and 3) an appropriate balance of moduli and relative ratios between the layers (or microphases).

  相似文献   


2.
    
Multistimuli‐responsive shape‐memory polymers are highly desirable in various applications, and numerous modes have been developed in recent years. However, most of them need to reprogram before they are ready to respond to another stimulus while one is triggered. Here, a new strategy is developed to achieve dual‐stimuli‐responsive triple‐shape memory with non‐overlapping effect in one programming cycle. Here, a series of poly(l ‐lactide)‐poly(tetramethylene oxide) glycol copolymers (PLA‐PTMEG‐A) is prepared by selected dangling photoresponsive anthracene moieties on the crystalline PTMEG backbone. The architectures of the copolymers are well‐controlled in order to keep a good balance between the crystallinity of the soft segment and the mobility of the anthracene moieties. Thus, PLA‐PTMEG‐A's can respond to heat and light with non‐overlapping effect. The thermally‐induced shape‐memory effect (TSME) is realized by the crystallization–melting transition of PTMEG soft segments, while the light‐induced shape‐memory effect (LSME) is achieved by the reversible photodimerization of anthracene groups. In view of the non‐overlapping effect of TSME and LSME in the copolymers, a triple‐shape‐memory effect triggered by dual‐stimuli is realized in one programming and recovery cycle.

  相似文献   


3.
In this investigation, hydrophobically modified polyacrylamide with low amounts of anionic long‐chain alkyl was synthesized by the free radical polymerization in deionized water. This water‐soluble copolymerization method is more convenient compared with the traditional micellar copolymerization methods. The copolymers were characterized using Fourier transform infrared, 1H NMR, and the molecular weight and polydispersity were determined using gel permeation chromatography. The solution behavior of the copolymers was studied as a function of composition, pH, and added electrolytes. As NaCl was added to solutions of AM/C11AM copolymers or pH was lowered, the shielding or elimination of electrostatic repulsions between carboxylate groups of the C11AM unit lead to coil shrinkage. The steady shear viscosity and dynamic shear viscoelastic properties in semidilute, salt‐free aqueous solutions were conducted to examine the concentration effects on copolymers. In addition, the shear superimposed oscillation technique was used to probe the structural changes of the network under various stresses or shear conditions. We prepared hydrophobically modified polyacrylamide with N‐alkyl groups in the aqueous medium. The advantage of this method is that the production is pure without surfactants. These results suggest that the unique aqueous solution behavior of the copolymers is different from conventional hydrophobically associating acrylamide. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 2465–2474, 2008  相似文献   

4.
    
Shape memory polymers (SMPs) are a class of smart materials which can recover from a deformed shape to their original shape by a certain external stimulus. To predict the deformation behaviors of SMPs, different constitutive models have been developed in the last few years. However, most of the constitutive models need many parameters to be determined by specific experiments and complex calibration processes. This drawback has limited their application in promoting the development of SMPs. Thus, it is imperative to develop a new constitutive model which is not only accurate, but also relatively simple. In our work, a novel fractional viscoelastic constitutive model coupling with time‐temperature superposition principle is first proposed for SMPs. Then, frequency sweep and temperature sweep experiments are conducted to determine the parameters of the model. Finally, the shape memory free recovery experiments are carried out to validate the predictive capability of the developed model. By comparing the predicted results with experimental data, we find that though our model has only eleven parameters in total, it could capture the thermomechanical behaviors of SMPs in very good agreement with experimental results. We hope the proposed new model provide researchers with guidelines in designing and optimizing of SMP applications. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018 , 56, 1125–1134  相似文献   

5.
Polymer networks showing a thermally induced shape‐memory effect were prepared through the crosslinking of oligo(?‐caprolactone)dimethacrylates under photocuring with or without an initiator. The influence of the molecular weight of the oligo(?‐caprolactone)dimethacrylates and the initiator concentration on the macroscopic properties of the polymer networks was investigated. The isothermal and nonisothermal crystallization behavior of the polymer networks was evaluated as a basic principle of the functionalization process. Shape‐memory properties such as the strain fixity and strain recovery rate were quantified with cyclic thermomechanical tensile experiments for different maximum elongations. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 1369–1381, 2005  相似文献   

6.
    
Stimuli‐responsive soft materials are becoming increasingly important in a wide range of contemporary technologies, and methods by which to promote thermal stimulation remotely are of considerable interest for controllable device deployment, particularly in inaccessible environments such as outer space. Until now, remote thermal stimulation of responsive polymers has relied extensively on the use of nanocomposites wherein embedded nanoparticles/structures are selectively targeted for heating purposes. In this study, an alternative remote‐heating mechanism demonstrates that the dielectric and resistive thermal losses introduced upon application of an alternating current generate sufficient heat to raise the temperature of a neat polyimide by over 70 °C within ≈10 s. Thermal imaging is used here to measure current‐induced temperature changes of polymeric media, and a proposed analytical model yields predictions that compare reasonably well with experimental data, confirming that such remote heating is viable. Conditions permitting a shape‐memory polymer possessing a melting transition and susceptible to dielectric actuation to achieve continuous electrostrain‐temperature cycling are identified.  相似文献   

7.
Lightly cross‐linked natural rubber (NR, cis‐1,4‐polyisoprene) was found to be an exceptional cold programmable shape memory polymer (SMP) with strain storage of up to 1000%. These networks are stabilized by strain‐induced crystals. Here, we explore the influence of mechanical stress applied perpendicular to the elongation direction of the network on the stability of these crystals. We found that the material recovers its original shape at a critical transverse stress. It could be shown that this is due to a disruption of the strain‐stabilizing crystals, which represents a completely new trigger for SMPs. The variation of transverse stress allows tuning of the trigger temperature Ttrig(σ) in a range of 45 to 0 °C, which is the first example of manipulating the transition of a crystal‐stabilized SMP after programming.  相似文献   

8.
In contrast to all known shape memory polymers, the melting temperature of crystals in shape memory natural rubber (SMNR) can be greatly manipulated by the application of external mechanical stress. As shown previously, stress perpendicular to the prior programming direction decreases the melting temperature by up to 40 K. In this study, we investigated the influence of mechanical stress parallel to prior stretching direction during programming on the stability of the elongation‐stabilizing crystals. It was found that parallel stress stabilizes the crystals, which is indicated by linear increase of the trigger temperature by up to 17 K. The crystal melting temperature can be increased up to 126.5 °C under constrained conditions as shown by X‐ray diffraction measurements.  相似文献   

9.
Composites with excellent water‐induced shape‐memory effects (SMEs) were successfully synthesized by first using clay as the SME‐activating phase and thermoplastic polyurethane (TPU) as the matrix. Naturally abundant clay was grafted with poly(methacrylic acid) (PMAA) to improve particle interactions, which allowed for the formation of strong percolation networks in the composites, determined by swelling tests and dynamic mechanical analysis in combination with theoretical modeling. This led to significant improvements of the polymer modulus and high water absorptions, causing reversible modulus changes of up to 30 times from the wet to the dry condition. The results from cyclic wetting‐drying‐stretching tests showed the TPU–clay composite containing 10.4 vol % PMAA‐grafted clay exhibited the best SMEs among the composites investigated, with the shape fixity and shape recovery ratios being 82% and 91%, respectively. Besides SMEs, these new polymer–clay composites were also pH‐sensitive and mechanically adaptive upon exposure to water. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2013 , 51, 1513–1522  相似文献   

10.
Searching new shape memory polymer and the associating synthesis technology are critical on the development of smart materials. In this paper, a comprehensive study on Poly(hexylene adipate) PHA being the soft segment of shape memory polyurethane (SMPU) was presented. Bulk polymerization method was employed to synthesize the SMPU with different soft segment length (SSL) and hard segment content (HSC). The influences of SSL and HSC on its morphology and thermomechanical property using DSC, DMA, POM, and shape memory behavior were presented here. The results indicate that the thermal properties, dynamic mechanic properties, and crystal morphology of SMPU are influenced significantly by SSL and HSC. And it is found that the shape fixity increases with SSL but decreases with HSC. On the other hand, the shape recovery decreases with both SSL and HSC, and the associated recovery temperature increases either with the increasing SSL or with decreasing HSC. Lastly, it is concluded that in the PHA‐based‐SMPU, the lower limiting value of SSL for polyurethane having shape memory effect is 2000; their response temperature varied with SSL and HSC, changing from 41.0 to 51.9 °C. Stable hard segment crystal are formed at above 30% HSC sample in bulk polymerization, but shape memory behavior can also be observed when its physical crosslink point are formed in the lower HSC PHA‐based‐SMPU. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 444–454, 2007  相似文献   

11.
In this study a series of hyperbranched modified shape‐memory polymers were subjected to constrained shape recoveries in order to determine their potential use as thermomechanical actuators. Materials were synthesized from a diglycidyl ether of bisphenol A as base epoxy and a polyetheramine and a commercial hyperbranched poly(ethyleneimine) as crosslinker agents. Hyperbranched polymers within the structure of the shape‐memory epoxy polymers led to a more heterogeneous network that can substantially modify mechanical properties. Thermomechanical and mechanical properties were analyzed and discussed in terms of the content of hyperbranched polymer. Shape‐memory effect was analyzed under fully and partially constrained conditions. When shape recovery was carried out with fixed strain a recovery stress was obtained whereas when it was carried out with a constraining stress the material performs mechanical work. Tensile tests at TgE′ showed excellent values of stress and strain at break (up to 15 MPa and almost 60%, respectively). Constrained recovery performances revealed rapid recovery stress generation and unusually high recovery stresses (up to 7 MPa) and extremely high work densities (up to 750 kJ/m3). The network structure of shape‐memory polymers was found to be a key factor for actuator‐like applications. Results confirm that hyperbranched modified‐epoxy shape memory polymers are good candidates for actuator‐like shape‐memory applications. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 1002–1013  相似文献   

12.
A novel method for producing monodisperse micro‐ and nanosized shape memory particles from various shape memory polymers (SMPs) is reported. This method uses a polydimethylsiloxane mold to uniformly deform particles from complex shapes to other well‐defined shapes, harvest them without aggressive solvents or heat, and then return them to their original shapes upon heating above a preselected trigger temperature. By manipulating the material properties of both the mold and SMP, monodisperse asymmetric particles are easily achieved. This method is demonstrated with traditional SMPs and polymers with varying degrees of reactive functionality, crystallinity, and transition temperature. This additional reactivity and the robustness of this system allow easy tailoring of the surface with click chemistry to achieve chemical asymmetry.

  相似文献   


13.
Stimuli‐responsive hydrogels are continuing to increase in demand in biomedical applications. Occluding a blood vessel is one possible application which is ideal for a hydrogel because of their ability to expand in a fluid environment. However, typically stimuli‐responsive hydrogels focus on bending instead of radial uniform expansion, which is required for an occlusion application. This article focuses on using an interdigitated electrode device to stimulate an electro‐responsive hydrogel in order to demonstrate a uniform swelling/deswelling of the hydrogel. A Pluronic‐bismethacrylate (PF127‐BMA) hydrogel modified with hydrolyzed methacrylic acid, in order to make it electrically responsive, is used in this article. An interdigitated electrode device was manufactured containing Platinum electrodes. The results in this paper show that the electrically biased hydrogels deswelled 230% more than the non‐biased samples on average. The hydrogels deswelled uniformly and showed no visual deformations due to the electrical bias. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2013 , 51, 1523–1528  相似文献   

14.
Stimuli‐responsive ABC triblock copolymers with three segments with different phase‐separation temperatures were synthesized via sequential living cationic copolymerization. The triblock copolymers exhibited sensitive thermally induced physical gelation (open association) through the formation of micelles. For example, an aqueous solution of EOVE200b‐MOVE200b‐EOEOVE200 [where EOVE is 2‐ethoxyethyl vinyl ether, MOVE is 2‐methoxethyl vinyl ether and EOEOVE is 2‐(2‐ethoxy)ethoxyethyl vinyl ether; the order of the phase‐separation temperatures was poly(EOVE) (20 °C) < poly(EOEOVE) (41 °C) < poly(MOVE) (70 °C)] underwent multiple reversible transitions from sol (<20 °C) to micellization (20–41 °C) to physical gelation (physical crosslinking, 41–64 °C) and, finally, to precipitation (>64 °C). At 41–64 °C, the physical gel became stiffer than similar diblock or ABA triblock copolymers of the same molecular weight. Furthermore, the ABC triblock copolymers exhibited Weissenberg effects in semidilute aqueous solutions. In sharp contrast, another ABC triblock copolymer with a different arrangement, EOVE200b‐EOEOVE200b‐MOVE200, scarcely exhibited any increase in viscosity above 41 °C. The temperatures of micelle formation and physical gelation corresponded to the phase‐separation temperatures of the segment types in the ABC triblock copolymer. No second‐stage association was observed for AB and ABA block copolymers with the same thermosensitive segments found in their ABC counterparts. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2601–2611, 2004  相似文献   

15.
16.
A siloxane‐containing diphenol is synthesized from 1,1,3,3‐tetramethyldisiloxane and o‐allylphenol, followed by the Mannich condensation with aniline, methylamine, and formaldehyde yielding two siloxane‐containing benzoxazines. The onset polymerization temperature of aniline‐based benzoxazine is higher than that of the methylamine counterpart. The dynamic mechanical properties of the polybenzoxazines depend on the structure of the starting primary amines. Both polybenzoxazines exhibit one‐way dual‐shape memory behavior in response to changes in temperature, and they show excellent shape fixity ratios in bending, tension, and tensile stress–strain tests, high shape recovery ratios in bending and tension tests, but relatively low shape recovery ratios in tensile stress–strain test. The network chain segments including the alkylsiloxane units serve as a thermal control switch based on the glass transition temperatures (39 and 53 °C) for the polybenzoxazines. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 1255–1266  相似文献   

17.
A novel bifunctional acrylamido‐based reversible addition–fragmentation chain transfer (RAFT) chain‐transfer agent (CTA), N,N′‐ethylenebis[2‐(thiobenzoylthio)propionamide] (CTA2), has been synthesized and used for the controlled free‐radical polymerization of N,N‐dimethylacrylamide (DMA). A comparative study of CTA2 and the monofunctional CTA N,N‐dimethyl‐s‐thiobenzoylthiopropionamide (CTA1) has been conducted. Polymerizations mediated by CTA1 result in poly(N,N‐dimethylacrylamide) (PDMA) homopolymers with unimodal molecular weight distributions, whereas CTA2 yields unimodal, bimodal, and trimodal distributions according to the extent of conversion. The multimodal nature of the PDMAs has been attributed to termination events and/or chains initiated by primary radicals. The RAFT polymerization of DMA with CTA2 also results in a prolonged induction period that may be attributed to the higher local concentration of dithioester functionalities early in the polymerization. A series of ω‐ and α,ω‐dithioester‐capped PDMAs have been prepared in organic media and subsequently employed as macro‐CTAs for the synthesis of diblock and triblock copolymers in aqueous media with the zwitterionic monomer 3‐[2‐(N‐methylacrylamido)‐ethyldimethylammonio] propane sulfonate (MAEDAPS). Additionally, an ω‐dithioester‐capped MAEDAPS homopolymer has been used as a macro‐CTA for the block polymerization of DMA. To our knowledge, this is the first example of a near‐monodisperse, sulfobetaine‐containing block copolymer prepared entirely in aqueous media. The diblock and triblock copolymers form aggregates in pure water that can be dissociated by the addition of salt, as determined by 1H NMR spectroscopy and dynamic light scattering. In pure water, highly uniform, micellelike aggregates with hydrodynamic diameters of 71–93 nm are formed. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 1262–1281, 2003  相似文献   

18.
19.
In this work, the stress recovery behavior of shape memory polyurethane (SMPU) fiber was investigated. The as‐spun SMPU fibers were subjected to various programing‐recovery conditions. It was observed that recovering at 100 °C generated higher recovery stress than recovering at 150 °C. It was also found that, while hot‐drawn programed fiber has higher recovery stress than cold‐drawn programed fiber if recovered at 100 °C, cold‐drawn programed fiber has higher stabilized recovery stress than hot‐drawn programed counterpart when recovered at 150 °C. A morphological model was proposed based on the results from differential scanning calorimetry, Fourier transform infrared spectrometry, and X‐ray diffraction to understand the physics behind the different stress recovery behaviors. It is found that SMPU experiences different phase transitions and phase separations under different programing and stress recovery conditions. It is concluded that the two sequential phase separations taking place at 100 and 150 °C are primarily responsible for the differences in the stress recovery behavior. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014 , 52, 1429–1440  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号