首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recently, extensive investigations are carried out on design of highly controlled architecture and morphology by polymerizing the monomers doped in well‐defined liquid crystalline materials, followed by removal of the template liquid crystal molecules. In this communication, a photonic structure used as a new photonic bandgap (PBG) material is developed by imprinting helical structures on polymer matrices through multiple photocrosslinking processes in an induced chiral nematic mesophase using flexible polyethylene terephthalate (PET) films as substrates. The tuning properties of the reflection band of the imprinted cell are achieved using an uniaxial thermo‐stretching equipment. Furthermore, refilling of isotropic materials into the imprinted cells tune the reflection light wavelength leads to the change of color.

  相似文献   


2.
An in‐line monitoring device using a quartz crystal resonator for thin film polymerization was proposed, and its performance has been evaluated by implementing in the UV polymerization of 2‐hydroxyethyl methacrylate with a photoinitiator of 1‐chloroanthraquinone. Because the variation of resonant resistance of the resonator is proportional to the square root of viscosity change that is closely related to the polymerization degree, the resistance can be used as a measure of the polymerization degree. The resistance measurements were compared with the outcome of instrumental analyses of polymerization degree using an FTIR spectrometer and a gel permeation chromatograph. The experimental results showed that the resistance measurements were consistent with the experimental outcome of the instrumental analyses, and this indicates the effectiveness of the proposed device. Owing to the simplicity and availability of the resonator system, its wide utilization in the monitoring of a variety of film polymerization processes, including photoresistor application, is expected. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2428–2439, 2006  相似文献   

3.
ABSTRACT

Blue phase liquid crystals are soft 3D photonic crystals in which the liquid crystal molecules self-assemble to form a cubic structure with lattice spacing of a few hundred nanometers resulting in selective reflection of colours in the visible spectrum. The corresponding wavelength or the ‘photonic band gap’ can be tuned using various external stimuli such as thermal, electric, magnetic and optical fields. Here, we report efficient tuning of photonic band gap by utilising the combination of electric and optical fields in a blue phase liquid crystalline system. The studies indicate that the chirality of the medium has a direct bearing on the direction of the wavelength shift and the extent of the photonic band gap tunability. More importantly, the synergistic effect of the two fields helps in reversible tuning of the band gap.  相似文献   

4.
A novel method used for the preparation of poly(N‐isopropylacrylamide) (PNIPAAm) films of varying crosslink density under homogeneous/heterogeneous conditions is described in this paper. Photopolymerization of the N‐isopropylacrylamide (NIPAAm) monomer in water (homogeneous at ~7°C and heterogeneous at ~40°C) or a mixture of water/ethanol (50:50, heterogeneous at ~7°C) was carried out using 1‐[4‐(2‐hydroxyethoxy)‐phenyl]‐2‐hydroxy‐2‐methyl‐1‐propane‐1‐one (hydrophilic) or 2‐hydroxy‐2‐methyl propiophenone (hydrophobic) photo‐initiator. In order to investigate the effect of temperature and crosslink density, polymerization was carried out at ~7°C [below lower critical soluble temperature (LCST)] and ~40°C (above LCST) using varying amounts of N,N′‐methylene bisacrylamide (BIS) ranging from 1–4 wt%. Degree of swelling (determined by optical microscopy), phase transition temperature [determined by differential scanning calorimetry (DSC)] as well as morphology (scanning electron microscopy) were found to be dependent on solvent system (homogeneous/heterogeneous), temperature of polymerization and crosslink density. Hydrogels prepared at ~7°C using hydrophobic photo‐initiator and water/ethanol (50:50) as solvent, showed much higher degree of swelling at all levels of crosslink density as compared to hydrogel prepared at ~7°C using hydrophilic photo‐initiator and water as solvent. Hydrogels were used for patterning which may find applications in microfluidic devices. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

5.
ABSTRACT

In this study, we designed, synthesised and characterised two series of cholesteric liquid crystal polymers, QP series and ZP series. With polymethylhydrosiloxane as the main chain, QP series were synthesised by copolymerisation between the monomer M1 containing a cholesteryl mesogenic unit and the monomer M2 with a hydroxyl. ZP series, meanwhile, were synthesised by esterification between QP series members and the monomer M3, a carboxylic acid with an azo mesogenic unit. We characterised chemical structures of all the monomers and polymers by FT-IR and 1H-NMR, which proved that the target monomers and polymers had been obtained. We observed dramatic colour changes after the introduction of monomer M3 and Grandjean textures from both QP series and ZP series using POM. In addition, strong selective reflection could be observed as well. Then, we characterised the thermal properties of polymers by DSC, TGA and XRD to explore their phase transition behaviours further. Their photoresponsive and photochromic properties were characterised by UV-Vis spectrum.  相似文献   

6.
In this paper, polymer dispersed liquid crystals (PDLC) films with LC content as low as 40 wt% were prepared, and the electro‐optical properties were carefully investigated. To accomplish this, different (meth)acrylate copolymerizaiton monomers have been used. The electro‐optical properties and morphologies of the PDLC films were strongly influenced by the chemical structure of copolymerization monomers (hydroxypropyl methacrylate (HPMA), glycidyl methacrylate, hydroxypropyl acrylate) and their feed ratio. Lower driven voltage and higher contrast ratio were achieved when the PDLC films showed a morphology with suitably LC domain size. At high HPMA content, a thin polymer film was formed on the surface of PDLC samples, which is beneficial to decrease the total LC content in PDLC devices. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
Polymer dispersed liquid crystal (PDLC) films were prepared by photopolymerization of liquid crystal (LC)/polymerizable monomers/photoinitiator composites. The effects of the structures of the polymerizable monomers on the electro‐optical properties of PDLC films were investigated. It was found that the length of the molecular chain and the rigidity and flexibility of molecules influenced the structure of the polymer network in the PDLC films somewhat, and then affected the electro‐optical properties of the composites accordingly. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 1369–1375, 2008  相似文献   

8.
Wavelength limitation and diffraction of light are the bottlenecks encountered in the production of structures by conventional lithography. Nano‐imprinting has been a potential process for mass production of nanometer structures at low cost. This paper reports an innovative process to replicate the ridge‐shaped microstructures on the silicon mold onto the photoresist using gas‐assisted pressing mechanism and soft mold. The microstructures on the silicon mold are replicated unto PC films. The soft mold is obtained by casting the PDMS with the PC film as templates, PDMS mold and UV‐curable photoresist are brought into contact, and are pressurized by gas and cured by UV‐light at the same time. After curing, structures for optical wave guilding can be obtained, In this process, through the control of gas pressure, the residual layer of the ridge‐shaped component for light guilding can eliminated. Etching is no longer needed to get rid of the residual layer. This process is effective for mass production for replication of microstructures at low cost. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

9.
Chiral monomeric (+)‐bornyl methacrylate (BMA) was synthesized from (+)‐camphor. The normal mode of polymer‐stabilized cholesteric texture (PSCT) liquid crystal cells was fabricated using 97.3 wt% of liquid crystal (E48/CB15 = 92/8) and 2.7 wt% of various compositions of chiral and achiral monomers. BMA was used as a chiral monomer and, 4,4′‐bis[6‐(acryloyloxy)hexyloxy]biphenyl and ethyleneglycol dimethacrylate were used as achiral difunctional monomers. The electro‐optical characteristics and the morphology of the PSCT cells with chiral and achiral polymer materials were investigated. The effects of monomer concentration and polymerization conditions of the chiral (+)‐bornyl methacrylate on the electro‐optical characteristics and morphology of PSCT cells were also investigated. It was found that the electro‐optical characteristics of PSCT cells were improved by using the chiral monomer of (+)‐bornyl methacrylate effectively. A PSCT cell was fabricated, and the reversible turbid and transparent changes were examined by applying a 15 V electric field. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

10.
We present results for the effects of a crosslinking agent, cure temperature, and UV flux on the electro‐optical properties of polymer‐dispersed liquid crystal (PDLC) cells. These cells were fabricated using a mixture of a liquid crystal (E8) and an acrylic monomer (CN135). The maximum in the first derivative of the transmission vs. applied, sinusoidal voltage (inflection voltage, Vinf), varies systematically with PDLC formulation and cure‐process conditions. For PDLC cells fabricated with a crosslinking agent (SR295), Vinf increases with increasing the concentration of SR295. However, for cells fabricated without the use of a crosslinking agent, Vinf decreases with increasing the UV flux and decreasing temperature. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 404–410, 2004  相似文献   

11.
Polymer‐stabilized cholesteric liquid crystal (PSCLC) films with broadband reflection based on two‐step photopolymerization are fabricated. Owing to the helical twisting power (HTP) value of the chiral dopant (CD) decreasing with increasing temperature, PSCLC films with broadband reflection are obtained by two‐step polymerization anchoring helical pitch of different length at two different temperature points. The effect of monomer composition on the PSCLC reflection properties before and after polymerization was studied. The results show that the free‐radical monomers with appropriate concentration and cationic monomers with sufficient concentration are vital for the formation of PSCLC films with broadband reflection. In addition, the experiments show that the increase in the functionality and rigidity of the cationic monomer has a positive effect on the broadening of the reflection band. This study can provide guidance and reference for the selection of monomer species and concentration in PSCLC preparation. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 1126–1132  相似文献   

12.
In this paper, polymer‐dispersed liquid crystal (PDLC) films consisting of liquid crystal (LC)/monomers/indium tin oxide (ITO) nanoparticles with good near‐infrared absorption property had been fabricated, and the influence of the ITO nanoparticles modified with 3‐methacryloxypropyltrimethoxysilane (KH570) on the PDLC films was systematically studied. First, different liquid crystal content was studied to obtain PDLC films with good electro‐optical properties. And then, various weight ratio of ITO nanoparticles was added to samples. While the content of ITO nanoparticles was increased, the saturation voltage increased and the CR decreased. Though the electro‐optical properties of PDLC samples reduced with the addition ITO nanoparticles, the near‐infrared absorption property of films was enhanced.  相似文献   

13.
Due to the longevity of the cationic active centers, cationic ring‐opening photopolymerization can continue after illumination ceases. In addition, substantial reactivity enhancement for epoxides is realized through copolymerization with oxetanes. Here, the separate reactions of epoxide and oxetane moieties were resolved during illumination and subsequent dark cure via real‐time Raman spectroscopy. Using oxetane additives, reactivity and conversion of 3,4‐epoxycyclohexylmethyl‐3′,4′‐epoxycyclohexane carboxylate (EEC) were improved during illumination and subsequent dark cure through modulation of the initial formulation viscosity and selection of the oxetane secondary functional groups. The largest enhancement in reactivity occurred with secondary groups comprising either aliphatic chains with their flexibility or hydroxyls with their chain‐transfer capacity. In contrast, oxetanes containing UV‐absorbing phenyl rings reduced the initiation efficiency, and difunctional oxetanes suppressed overall conversion through additional crosslinking. Although bulk conversion was directly related to initial formulation viscosity, the impact of the oxetane secondary functional groups was greater. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 1436–1445  相似文献   

14.
Two series of photoreactive discotic liquid crystals consisting of a triphenylene core and six cinnamate units with one ( TPC1 n ) or two ( TPC2 n ) n‐alkoxy groups (C nH2n+1O; n = 10–14), respectively, as peripheral groups are synthesized. Both of them are polymerized into fibers up to 2 mm long by UV irradiation in liquid paraffin in the columnar LC temperature ranges. The fiber structures seem to be preconstructed in liquid paraffin. In addition, TPC2 n are shown to form microporous films up to 15 μm in diameter by simply casting the solutions of some solvents followed by drying for several minutes in air at room temperature. Photoirradiation of the films in the LC temperature range converts them to polymeric ones while preserving the microporous and hexagonally ordered structure. From comparison with TPC1 n and the hydrogenated derivative of TPC2 12 , the porous film‐forming property is suggested to result from the combination of the double bond of the cinnamoyl group and the two long alkoxy chains on the phenyl ring. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 605–612  相似文献   

15.
In this work, the thiol‐ene click reaction is employed to fabricate polymer‐dispersed liquid crystal (PDLC) films by photoinitiated polymerization. The PDLC films are prepared by systematic variation of key conditions: variety and content of ‐ene monomer, liquid crystal (LC) content, curing time, and curing light intensity. We find that both the morphologies and electro‐optic properties of these films are adjustable. When increasing the length of alkyl main chain of ‐ene monomers, the driving voltages reduce, but in turn, the contrast ratio decreases. Increasing ‐ene monomer content raises the driving voltages as well as the response time, and the increase of LC content lowers the driving voltages but has a negative effect on the contrast ratio. The changes to the curing conditions (both curing time and UV light intensity) can be used to modify the driving voltages, response time, and contrast ratios of PDLC films. These comparative studies will elucidate new insights in commercial applications of intelligent PDLC films.  相似文献   

16.
Liquid‐crystalline (LC) polyesters based on hexanediol or butanediol, dimethyl 4,4′‐biphenyldicarboxylate, and a sugar‐based diol, isosorbide or isomanide, were prepared with conventional melt polymerization. 1H NMR spectroscopy confirmed that 50 mol % of the charged sugar diol was successfully incorporated into various copolyesters. Modest molecular weights were obtained, although they were typically lower than those of polyester analogues that did not contain sugar‐based diols. Thermogravimetric analysis demonstrated that the incorporation of isosorbide or isomanide units did not reduce the thermal stability in a nitrogen atmosphere. Melting points that ranged from 190 to 270 °C were achieved as a function of the copolyester composition. The lined focal conic fan textures, typical indications of a chiral smectic C LC phase, were observed upon the shearing of the LC melt under polarized light microscopy. Atomic force microscopy revealed that the twisted molecular orientation in the chiral LC phase induced periodically soft lamellar structures. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 2512–2520, 2003  相似文献   

17.
Polymer‐dispersed liquid crystals (PDLC) films were prepared from ultraviolet (UV) irradiation‐induced polymerization of the photopolymerizable monomers in photopolymerizable monomers/nematic liquid crystal (LC) mixtures. The effects of the composition of the mixtures, the curing temperature, and the UV light intensity on the microstructure of the polymer network in the PDLC films were investigated. Furthermore, the effects of the microstructures on the light scattering properties of the PDLC films in the wavelength region of 300–2500 nm were studied experimentally and theoretically based on the combination of three kinds of classical light scattering theories: the Rayleigh‐Gans (RG) approach, the anomalous diffraction (AD) approach, and the geometrical optics (GO) approach. It was found that the sizes of LC domain in PDLC films increased with the increase of the LC content as well as the decrease of the UV curing intensity, while increased at first and then decreased with the increase of the curing temperature. Moreover, smaller LC domain sizes could exhibit strong scattering properties in a smaller VIS wavelength region and the transmittance in NIR region (especially in the wavelength range of 1300–2500 nm) obviously decreased with the increasing sizes of LC domain. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 2090–2099, 2008  相似文献   

18.
Polymer dispersed liquid crystal (PDLC) films were prepared by a devised method, in which photo‐polymerization induced phase separation in a mixtures of a macro‐iniferter, methyl acrylater, and liquid crystal. The morphology of the obtained PDLC films was examined on a polarized optical microscopy, and the effect of molecular weight of MIs on the electro‐optical properties was deliberately investigated. Decreasing the molecular weight of MIs in the films led to formation of larger liquid crystal droplets and a lower Vth values. Vsat increased and the memory effect decreased because of the increased interface anchoring strength induced by the higher molecular weight of polymer matrices. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 1530–1534, 2009  相似文献   

19.
Nanocomposite materials prepared from radically photocurable hybrid sol–gel precursors have been widely developed within the last decade, especially to devise novel optical devices and coatings. For their synthesis, a preferential route has involved in the successive sol–gel process of acrylate trialkoxysilane precursors followed by radical photopolymerization. In contrast, this work presents an original one‐step synthesis based on the association of two different photoinitiators (PIs) in the same formulation: the photolysis of a hydroxyphenylketone (radical PI) affords polyacrylate chains while that of a diaryl iodonium salt (cationic PI) generates powerful superacids catalyzing the sol–gel reactions of the alkoxy functions. The behavior of methacrylate and acrylate trimethoxysilane precursors was compared to highlight the effect of the organic moiety functionality on the reaction kinetics (Fourier transform infrared spectroscopy) and the film microstructure (13C and 29Si solid‐state nuclear magnetic resonance). Interestingly, evidence of local organization in these hybrid films was also given by X‐ray analysis. In a last part, their thermomechanical properties were discussed thoroughly using a range of techniques: DSC, scratch‐resistance test, nanoindentation. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 4150–4158, 2010  相似文献   

20.
In this work is reported the preparation and characterization of 5,10,15,20‐tetraphenylporphyrin (H2TPP) films at the water‐air interfaces. The surface pressure‐area isotherms (π‐A) and UV‐Vis spectroscopy were used to investigate the effect of the spreading methods and parameters on the porphyrin monolayer formation. Also, Langmuir‐Blodgett (LB) and Langmuir‐Schaefer (LS) films were deposited onto glass substrates in order to study the conformation changes in porphyrin molecular packing. Quartz crystal microbalance (QCM) was utilized as the active solid substrate for the development of the NO2 gas sensor based on the H2TPP molecular films. The results of π‐A curves have clearly shown the significant contribution of the preparation methods and processing parameters on the conformation of porphyrin molecular films. The UV‐Vis spectroscopy results using polarized absorption dichroism have indicated different molecular packing for porphyrin films deposited by LB and LS methods, with relative tilted angles of 50° ± 5° and 35° ± 5°, respectively. Moreover, the QCM response has given strong evidence that H2TPP porphyrin molecular films have performed as NO2 chemsensor. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号