首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A novel conductive blend of polyaniline (PANI) with polyamidoamine dendrimer (PAMAM (G 2.0)) was prepared by different blending procedure. The PANI‐PAMAM blended polymers were characterized by UV–vis, FTIR, and electron paramagnetic resonance (EPR) spectra. The effect of varying the blending procedure on structure and EPR properties of PANI‐PAMAM blended polymers was investigated. Varying the blending procedure and temperature has a direct effect on the structure and EPR parameters (ΔHPP, g factor, NS, T2, and A/B ratio). EPR spectroscopic studies suggested the presence of chemical interaction between PANI and PAMAM. Electron localization effects in PANI‐PAMAM blended polymers can therefore be studied using the technique of EPR. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 1–8, 2006  相似文献   

2.
We present here the synthesis of two kinds of amphiphilic block copolymers, a diblock copolymer MPEG‐b‐PTAm and a triblock copolymer MPEG‐b‐PLA‐b‐PTAm, which can self‐assemble into micelles with nitroxyl radicals‐containing PTAm segment in the core. The structure of the block copolymers was characterized by 1H NMR and GPC. Dynamic laser light scattering and transmission electron microscopy were used to study the micellar behavior of the two block copolymers in aqueous solution. The micelles carrying nitroxyl radicals in the core can generate electron paramagnetic resonance, which is stable for a period of time up to 8 min even in the presence of reducing reagent such as ascorbic acid. The enhanced stability against the reducing agent was ascribed to the inaccessibility of the nitroxyl radical core placed in the interior of the micelles. Combined with the biocompatibility, these micelles were promising to be used as the EPR probes for bioimaging in vivo. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

3.
Imprinted polymers were synthesized using the surface‐grafting technique with [Co(III) 1 (vpy)(dmap)]PF6 { 1 , bis[2‐hydroxy‐4‐(4‐vinylbenzyloxy)benzaldehyde]ethylene‐diimine; vpy: 4‐vinylpyridine; dmap: N,N′‐dimethyl‐4‐aminopyridine} as the template. The metallated sites were probed using spectroscopic techniques including UV–vis, Fourier transform infrared, and electron paramagnetic resonance (EPR) spectroscopies to investigate the site architecture and isolation of the immobilized sites in the surface‐grafted polymers. EPR studies showed a distribution of four and five coordinated sites similar to the bulk copolymers, and the surface‐grafted polymer showed reversible binding to dioxygen in multiple cycles. Both results indicated site isolation in the surface‐grafted polymers analogous to the bulk polymers. Although the dioxygen binding in surface‐grafted polymers is reversible, the spin density decreases to 50% in the third cycle as opposed to bulk copolymers. This indicates that the sites are more heterogeneous and more exposed to the environment than the analogous sites in bulk copolymers. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 888–897, 2001  相似文献   

4.
Amphiphilic tris(2,2′‐bipyridine)ruthenium‐cored star‐shaped polymers consisting of one polystyrene block and two poly(N‐isopropylacrylamide) blocks were prepared by the “arm‐first” method in which RAFT polymerization and nonconvalent ligand–metal complexation were employed. The prepared amphiphilic star‐shaped metallopolymers are able to form micelles in water. The size and distribution of the micelles were studied by dynamic light scattering and transmission electron microscopy techniques. Preliminary studies indicate that the polymer concentration and the hydrophilic poly(N‐isopropylacrylamide) block length can affect the morphologies of the formed metal‐interfaced core–shell micelles in water. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 4204–4210, 2007  相似文献   

5.
Steady‐state electron paramagnetic resonance (EPR) spectroscopy using nitroxide spin probes has been used to investigate the plasticization of poly(vinyl acetate) and poly(ethyl methacrylate) by carbon dioxide. By varying the CO2 pressure at constant ambient temperature, the glass transition for each polymer could be depressed to 25 °C. This effect has been quantified by a parameter P50G, obtained by plotting the EPR spectral width as a function of CO2 pressure. Certain spin probes showed free volume distribution effects, manifested in the EPR spectra as “double peaks.” Possible reasons for this phenomenon are presented and discussed, and the efficacy of CO2 as a plasticizer is clearly demonstrated by direct comparison with di‐n‐butyl phthalate. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 2097–2108, 2005  相似文献   

6.
Three poly(N‐vinylcarbazole) (PVK)‐based polymer electrets were synthesized through Friedel‐Crafts postfunctionalization for the function of charge storage in nonvolatile organic field effect transistor (OFET) memory devices. The bulky side chain effect of these stacked polymer electrets on the morphology, water contact angles, and memory characteristics were examined with regard to those of precursor PVK. The introduction of steric hindrance groups could interrupt the large length of π‐stacked structures in PVK and block the form of region‐regular structures from region‐random on external electric field. As a result, the memories based on the three modified polymers exhibited approximate memory windows of 32 V increased by 13 V with respect to PVK. Besides, the write‐read‐erase‐read cycles stability of the modified polymers was superior to that of PVK. Furthermore, we found that the holes were mainly located in the region of local π‐stacked structures and bulky π‐conjugated groups also acted as additional electron trapping sites. Molecular engineering of charge trapping site with tunneling polymers will be a promise strategy for the advance of transistor memory. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 3554–3564  相似文献   

7.
Site‐directed spin labeling (SDSL) combined with continuous wave electron paramagnetic resonance (cw EPR) spectroscopy is a powerful technique to reveal, at the residue level, structural transitions in proteins. SDSL‐EPR is based on the selective grafting of a paramagnetic label on the protein under study, followed by cw EPR analysis. To extract valuable quantitative information from SDSL‐EPR spectra and thus give reliable interpretation on biological system dynamics, numerical simulations of the spectra are required. Such spectral simulations can be carried out by coding in MATLAB using functions from the EasySpin toolbox. For non‐expert users of MATLAB, this could be a complex task or even impede the use of such simulation tool. We developed a graphical user interface called SimLabel dedicated to run cw EPR spectra simulations particularly coming from SDSL‐EPR experiments. Simlabel provides an intuitive way to visualize, simulate, and fit such cw EPR spectra. An example of SDSL‐EPR spectra simulation concerning the study of an intrinsically disordered region undergoing a local induced folding is described and discussed. We believe that this new tool will help the users to rapidly obtain reliable simulated spectra and hence facilitate the interpretation of their results. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

8.
Polymers with multiple tunable responses were achieved by incorporating boronic acid functionality along the backbone of a thermoresponsive polymer. The inherent Lewis acidity and diol‐sensitivity of boronic acid moieties allowed these polymers to respond to changes in pH and glucose concentration. Through reversible addition‐fragmentation chain transfer copolymerization of boronic acid‐containing monomers with N‐isopropylacrylamide, well‐defined block copolymers were synthesized containing a hydrophilic N,N‐dimethylacrylamide block and a second, responsive block with temperature‐dependent water solubility, making the resulting polymers capable of self‐assembly into nanostructures upon heating. By incorporating boronic acids within the thermoresponsive block, the cloud point of the polymer depended on the solution conditions, including pH and diol concentration, allowing tunable cloud point ranges. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 2309–2317  相似文献   

9.
Direct arylation polymerization between derivatives of dibromodiketopyrrolopyrrole (DPP) and thienoisoindigo (TIIG) resulted in two π‐conjugated copolymers with average molecular weights up to 24.0 kDa and bandgaps as low as 0.8 eV. The structural analysis of the obtained two polymers revealed well‐defined alternating conjugation backbones without obvious structural defects. The introduction of hexyl‐group in the β‐position of thiophene rings in the DPP units not only reduces the bandgap of conjugated polymer compared to a similar polymer containing bare‐thiophene flanked DPP but also affects polymer morphology in thin films. P‐type charge‐transport characteristics were observed for two polymers in organic field‐effect transistors with comparable hole mobilities. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 3205–3213  相似文献   

10.
Five fluorescence polymers with poly(perylene‐alt‐phenyleneethynylene)s (PPPEs) backbone and multiple side chains containing ester‐groups were synthesized via Sonogashira coupling reaction. These polymers were soluble in common organic solvents to form red‐orange solution. The polymer powders had dark red color. The absorption/emission spectra of these polymers were similar, with absorption bands between 300 and 600 nm and an emission peak between 520 and 700 nm. Furthermore, the ester groups of the side chains were partially or completely hydrolyzed, resulting in the fluorescence PPPEs with tunable density of carboxylic acid functional groups on the polymer chains as interaction/reaction sites for further applications. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 1880–1886  相似文献   

11.
Telechelic polymers, macromolecules having two reactive end groups, can serve as building blocks for constructing polymers or polymeric materials that have complex architectures. Among the telechelic polymers, polymers bearing hydroxyl groups at two terminals have been used as components for preparation of functional materials. In the present study, RAFT polymerization of both N‐acryloylmorphorin and N‐succinimidyl acrylate by using a newly synthesized dithiobenzoate‐type chain transfer agent bearing hydroxyl groups at both terminals (HECPHD) was reported. After the acryloylation of the hydroxyl terminals of the obtained polymer, gelation was observed. Furthermore, the polymer could react with a protein via the conjugation of the succinimidyl esters‐containing polymers to the amino groups present on the protein surface. The results show that activated esters‐bearing polymers with hydroxyl groups at both terminals can be used as building blocks for constructing polymeric materials for an immobilization of biomacromolecules. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55 , 1356–1365  相似文献   

12.
Covalent functionalization of alkyne‐decorated multiwalled carbon nanotubes (MWNTs) with a well‐defined, azide‐derivatized, thermoresponsive diblock copolymer, poly(N,N‐dimethylacrylamide)‐poly(N‐isopropylacrylamide) (PDMA‐PNIPAM) was accomplished by the Cu(I)‐catalyzed [3 + 2] Huisgen cycloaddition. It was found that this reaction could simultaneously increase the molecular size and bonding density of grafted polymers when PDMA‐PNIPAM micelles were employed in the coupling system. On the other hand, attachment of molecularly dissolved unimers of high‐molecular weight onto the nanotube resulted in low‐graft density. The block copolymer bearing azide groups at the PDMA end was prepared by reversible addition–fragmentation transfer polymerization, which formed micelles with a diameter of ~40 nm at temperatures above its critical micelle temperature. Scanning electron microscopy was utilized to demonstrate that the coupling reaction was successfully carried out between copolymer micelles and alkyne‐bearing MWNTs. FTIR spectroscopy was utilized to follow the introduction and consumption of alkyne groups on the MWNTs. Thermogravimetric analysis indicated that the functionalized MWNTs consisted of about 45% polymer. Transmission electron microscopy was utilized to image polymer‐functionalized MWNTs, showing relatively uniform polymer coatings present on the surface of nanotubes. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 7187–7199, 2008  相似文献   

13.
In this study, a novel application of radical addition‐coupling polymerization (RACP) for synthesis of hyperbranched polymers is reported. By Cu/PMDETA‐mediated RACP of 2‐methyl‐2‐nitrosopropane with trimethylolpropane tris(2‐bromopropionate) or a bromo‐ended 3‐arm PS macromonomer, two types of hyperbranched polymers with high degree of polymerization are synthesized under mild conditions, respectively. The chemical structures of the hyperbranched polymers are carefully characterized. By selective degradations of the ester groups and weak bonds of NO? C in the polymers, high degree of alternative connection of the two monomers in the synthesized polymers have been identified. Based on the experimental results, mechanism of formation of the hyperbranched polymer is proposed, which includes formation of carbon radicals from the tribromo monomer through single electron transfer, its capture by 2‐methyl‐2‐nitrosopropane that results in nitroxide radical, and cross‐coupling reaction of the nitroxide radical with other carbon radicals. Hyperbranched polymer can be formed in a step‐growth mode after multiple steps of such reactions. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 904–913  相似文献   

14.
A hetero‐arm star polymer, poly(ethylene glycol)‐poly(N‐isopropylacrylamide)‐poly(L‐lysine) (PEG‐PNIPAM‐PLys), was synthesized by “clicking” the azide group at the junction of PEG‐b‐PNIPAM diblock copolymer with the alkyne end‐group of poly(L‐lysine) (PLys) homopolymer via 1,3‐dipolar cycloaddition. The resultant polymer was characterized by gel permeation chromatography, proton nuclear magnetic resonance, and Fourier transform infrared spectroscopes. Surprisingly, the PNIPAM arm of this hetero‐arm star polymer nearly lose its thermal responsibility. It is found that stable polyelectrolyte complex micelles are formed when mixing the synthesized polymer with poly(acrylic acid) (PAA) in water. The resultant polyelectrolyte complex micelles are core‐shell spheres with the ion‐bonded PLys/PAA chains as core and the PEG and PNIPAM chains as shell. The PNIPAM shell is, as expected, thermally responsive. However, its lower critical solution temperature is shifted to 37.5 °C, presumably because of the existence of hydrophilic components in the micelles. Such star‐like PEG‐PNIPAM‐PLys polymer with different functional arms as well as its complexation with anionic polymers provides an excellent and well‐defined model for the design of nonviral vectors to deliver DNA, RNA, and anionic molecular medicines. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 1450–1462, 2009  相似文献   

15.
Linear (co)polymers and dimethacrylate‐end‐linked polymer networks of methyl methacrylate with 2‐(dimethylamino)ethyl methacrylate, cleavable in the middle of the polymer chain, either under thermolysis or alkaline hydrolysis conditions, were prepared via atom transfer radical polymerization (ATRP) using a specially designed bifunctional degradable initiator. This initiator was 2,6‐pyridinediethanol di(2‐bromo‐2‐methyl propanoate) (PyDEDBrMeP), bearing two 2‐(pyridin‐2‐yl)ethyl ester moieties, known for their thermal and hydrolytic (alkaline conditions) lability. As a control, a more stable bifunctional ATRP initiator, 2,6‐pyridinedimethanol di(2‐bromo‐2‐methyl propanoate) (PyDMDBrMeP), was also synthesized together with the corresponding linear polymers and polymer networks prepared from it. Thermal or hydrolytic treatment of the polymers prepared using PyDEDBrMeP led to a reduction in the molecular weights of the linear polymers by a factor of two, and to the conversion of the polymer networks to soluble branched (star) structures, consistent with the expected cleavage of the initiator residue located in the middle of the polymer chain. Thermal treatment of the polymers prepared using PyDMDBrMeP did not affect their molecular weight due to the thermal stability of the (pyridin‐2‐yl)methyl ester group, while treatment under alkaline hydrolysis conditions resulted in complete cleavage, similar to the PyDEDBrMeP‐prepared polymers. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 2342–2355  相似文献   

16.
The EPR technique is commonly used for the detection and characterization of paramagnetic centers in chemical science. This method can provides a lot of information, such as identity, structure, dynamics, interaction, orientation, glass transition temperature, adsorption behavior, functionality, phase behavior, nano-inhomogeneities, and conformation of the free-radical portion of the polymer chain. Most polymers intrinsically possess diamagnetic properties, so in order to study polymers with EPR, paramagnetic centers need to be incorporated into the polymer systems. Spin labeling and spin probing are main methods of covalently attaching paramagnetic centers to polymer chains or embedding them in polymer matrices through non-covalent interactions, respectively. Spin labeling and spin probing techniques for polymers and polymer systems (especially with nitroxide radicals) have also been studied, which have a profound impact on polymer science. This review focuses on the continuous wave EPR technique and introduces the recent advances in spin labeled polymers and spin probed polymer systems in EPR research.  相似文献   

17.
This work demonstrates the fabrication of terpene based sustainable methacrylate polymers by an environmentally benign emulsion polymerization method. The polymerization reaction has been found to be influenced by the side chain length of the methacrylate(s), which has been quantitatively calculated from the density functional theory. Apart from the analysis of the copolymer microstructure, various properties of the synthesized polymers have been studied and correlated with the structure of the methacrylate(s). The sub‐ambient glass transition temperature indicates rubbery nature of the synthesized copolymers. While the presence of residual unsaturations from the terpene moiety could act as an additional crosslinking site, the methacrylate group may facilitate the dispersion of polar additives. The completely new class of terpene‐based sustainable rubbery methacrylate polymers is thus envisaged as promising materials for polymer and allied industries. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 2639–2649  相似文献   

18.
Poly(oligoethylene glycol)‐poly(2‐vinylpyridine) is a model diblock for studying the effect of block‐localized charge on block copolymer self‐assembly because in the absence of charge the polymers are perfectly miscible, and upon protonation of the vinylpyridine block the polymer undergoes an order–disorder transition. Seven model block copolymers with molecular weights of approximately 60 kDa containing poly(2‐vinylpyridine) volume fractions spanning 0.069–0.700 were synthesized using reversible addition fragmentation transfer polymerization and then studied to understand the effect of protonation level, diblock composition, and temperature on the location of the ordering transition and the type of nanostructures formed in a charge asymmetric system. All of the polymers displayed lower critical solution‐type behavior, with the order–disorder transition temperature decreasing with increasing acid content. Polymers with symmetric compositions showed the highest degree of incompatibility for a given degree of protonation, and the observed morphologies for all polymers were consistent with those observed at similar compositions for classical hydrophobic block copolymers. The observed protonation‐induced phase transition can be explained by the shift of the Flory–Huggins parameter due to the alternation of the identity of monomers, consistent with the prediction of Nakamura and Wang's theory. The use of polyvalent ions promotes self‐assembly at lower concentrations, consistent with ionic crosslinking effects between polymer chains that are promoted at high concentration due to exchange entropy in crosslinked polymers. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55, 1181–1190  相似文献   

19.
The field of polymer chemistry is currently experiencing major research efforts into development of novel techniques for synthesis of polymers with well‐controlled microstructure. Recently, a new method has been reported [McHale et al., Nat. Chem. 2012, 4, 491–497] whereby high molecular weight and low dispersity polymer can be obtained by a radical polymerization process via the use of solely physico‐chemical interactions. This work was based on the combination of H‐bonding templated polymerization confined within nanoreactors of self‐assembled block copolymers. Herein, this system is thoroughly investigated to fully elucidate the underlying mechanism. Modification of physico‐chemical parameters, kinetic parameters as well as observations of size exclusion chromatography (SEC) results and colloidal behavior in various solvents provide revised insights into the mechanism. Through detailed NMR and SEC investigations, it is demonstrated that the SEC secondary peak originally believed to be the high molecular weight “daughter” polymer actually corresponds to nanoparticles containing the daughter polymer. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 1590–1600  相似文献   

20.
This article reports on optically active core/shell nanoparticles constituted by chiral helical polymers and prepared by a novel approach: using self‐assembled polymer micelles as reactive nanoreactors. Such core/shell nanoparticles were composed of optically active helical‐substituted polyacetylene as the core and thermosensitive poly(N‐isopropylacrylamide) as the shell. The synthetic procedure is divided into three major steps: (1) synthesis of amphiphilic diblock copolymer bearing polymerizable C[tbond]C bonds via atom transfer radical polymerization, followed by (2) self‐assembly of the diblock copolymer to form polymer micelles; and (3) catalytic emulsion polymerization of substituted acetylene monomer conducted using the polymer micelles as reactive nanoreactors leading to the core/shell nanoparticles. The core/shell nanoparticles simultaneously exhibited remarkable optical activity and thermosensitivity. The facile, versatile synthesis methodology opens new approach toward preparing novel multifunctional core/shell nanoparticles.© 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号