首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
左敏 《高分子科学》2017,35(12):1524-1539
The variation of phase morphology, critical temperature of demixing, and molecular dynamics for polystyrene/poly(vinyl methyl ether)(PS/PVME) blends induced by hydrophilic nanosilica(A200) or hydrophobic nanosilica(R974) was investigated. With the phase separation of blend matrix, A200 migrated into PVME-rich phase due to strong interaction between A200 and PVME, while R974 moved into PS-rich phase. The thermodynamic miscibility and concentration fluctuation during phase separation of blend matrix were remarkably retarded by A200 nanoparticles due to the surface adsorption of PVME on A200, verified by the correlation length ξ near the critical region from rheological measurement and the weakened increment of reversing heat capacity(ΔC_p) during glass transition via modulated differential scanning calorimetry(MDSC). The restricted chain diffusion induced by nanosilica still occurred despite no influence of A200 and R974 on the segmental dynamics of homogenous blend matrix. The interactions between nanosilica and polymer components could restrict the terminal relaxation of blend matrix and further manipulate their phase behavior.  相似文献   

2.
In this work, ultrafast differential scanning calorimetry (UFDSC) is used to study the dynamics of phase separation. Taking poly(vinyl methyl ether)/polystyrene (PVME/PS) blend as the example, we firstly obtained the phase diagram that has lower critical solution temperature (LCST), together with the glass transition temperature (Tg) of the homogeneous blend with different composition. Then, the dynamics of the phase separation of the PVME/PS blend with a mass ratio of 7:3 was studied in the time range from milliseconds to hours, by the virtue of small time and spatial resolution that UFDSC offers. The time dependence of the glass transition temperature (Tg) of PVME‐rich phase, shows a distinct change when the annealing temperature (Ta) changes from below to above 385 K. This corresponds to the transition from the nucleation and growth (NG) mechanism to the spinodal decomposition (SD) mechanism, as was verified by morphological and rheometric investigations. For the SD mechanism, the temperature‐dependent composition evolution in PVME‐rich domain was found to follow the Williams–Landel–Ferry (WLF) laws. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55, 1357–1364  相似文献   

3.
The effect of phase‐separated morphology on the rheological properties of polystyrene/poly(vinyl methyl ether) (PS/PVME) blend was investigated by optical microscopy (OM), light scattering (LS) method, and rheology. The blend had a lower critical solution temperature (LCST) of 112°C obtained by turbidity experiment using LS at a heating rate of 1°C/h. Three different blend compositions (critical 30/70 PS/PVME by weight) and two off‐critical (50/50 and 10/90)) were prepared. The rheological properties of each composition were monitored with phase‐separation time after a temperature jump from a homogeneous state to the preset phase‐separation temperature. For the 30/70 and 50/50 blends, it was found that with phase‐separation time, the storage and loss moduli (G′ and G″) increased at shorter times due to the formation of co‐continuous structures resulting from spinodal decomposition. Under small oscillatory shearing, shear moduli gradually decreased with time at longer phase‐separation times due to the alignment of co‐continuous structures toward the flow direction, as verified by scanning electron microscopy. However, for the 10/90 PS/PVME blend, the rheological properties did not change with phase‐separation times. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 889–906, 1999  相似文献   

4.
The phase behavior and phase‐separation dynamics of polystyrene/polyvinyl methyl ether (PS/PVME) blend with a critical composition of 70 vol % PVME were examined with a light scattering technique under a shear‐rate range of 0.1–40 s?1. If the shear rates were less than 8 s?1 and the starting temperatures of the measurement were 343 and 383 K, respectively, two cloud points were observed, whereas after the shear rate was higher than 8 s?1, only one cloud point existed, 20 K higher than that of the static state of the blend. Investigation of the phase‐separation dynamics at 443 K suggested that in the vorticity direction the phase‐separation behavior at the early stage and the later stage can be explained by Cahn–Hilliard linearized theory and the exponent growth law, respectively. Phase separation occurs after a shearing time, which was called a delay time τd. The delayed time τd, the apparent diffusion coefficient, and the exponent term of the blend show strong dependence on shear rates. A theoretical prediction of the phase behavior of PS/PVME under a shear flow field by introducing an elastic energy term into Flory's equation‐of‐state theory was made, and the prediction was consistent with the experimental results. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 661–669, 2003  相似文献   

5.
The linear viscoelastic properties of polystyrene polyethylene (PS/PE) blends have been investigated in the molten state. For concentrations of the dispersed phase equal to 30 vol %, the blends exhibited a droplet‐matrix morphology with a volume‐average diameter of 5.5 μm for a 70/30 PS/PE blend at 200 °C and 14.7 μm for a 30/70 PS/PE blend at 230 °C. Enhanced elasticity (G′) for both blends, in the terminal zone, compared to the modulus of the matrix (PS and PE, respectively) was observed. This is related to the deformation of the droplets in the matrix phase and hence to the interfacial forces between the blend components. The results for these uncompatibilized blends are shown to be in agreement with the predictions of the emulsion model of Palierne. These predictions were used to obtain the interfacial tension between PS and PE, which was found to be between 2 and 5 mN/m at 200 °C and 4 ± 1 mN/m at 230 °C. Independent interfacial tension measurements using the breaking‐thread method resulted in a value of 4.7 mN/m and 4.1 mN/m at 200 °C and 230 °C for the respective blends. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 1359–1368, 2000  相似文献   

6.
Photooxidation of blends of polystyrene and poly (vinyl methyl ether) was studied at 30°C. The oxygen uptake by PS was negligible but PVME oxidized readily. The induction period of oxidation of PVME was prolonged by the presence of PS. The steady state rate of oxidation of the blend was strongly influenced by the segmental mobility of the blend which also governed the kinetics and morphology of phase separation. The molecular weight of PVME decreased more slowly in the blend as PS content increased. It was believed that the reaction between PVME radicals and PS resulted in less reactive PS radicals which retarded oxidation. The PS radicals eventually underwent chain scission reactions.  相似文献   

7.
In this study, we describe a new strategy for producing narrowly dispersed functional colloidal particles stabilized by a nanocomposite with hydrophilic clay faces and hydrophobic polystyrene (PS) brushes on the edges. This method involves preparation of polymer brushes on the edges of clay layers and Pickering suspension polymerization of styrene in the presence of the nanocomposites. PS brushes on the edges of clay layers were prepared by atom transfer radical polymerization. X‐ray diffraction and thermogravimetric analysis results indicated that PS chains were grafted to the edges of clay platelets. Transmission electron microscope results showed that different morphologies of clay‐PS particles could be obtained in different solvents. In water, clay‐PS particles aggregated together, in which PS chains collapsed forming nanosized hydrophobic domains and hydrophilic clay faces stayed in aqueous phase. In toluene, clay‐PS particles formed face‐to‐face structure. Narrowly dispersed PS colloidal particles stabilized by clay‐PS were prepared by suspension polymerization. Because of the negatively charged clay particles on the surface, the zeta potential of the PS colloidal particles was negative. Positively charged poly(2‐vinyl pyridine) (P2VP) chains were adsorbed to the surface of PS colloidal particles in aqueous solution at a low pH value, and gold nanoparticles were prepared in P2VP brushes. Such colloidal particles may find important applications in a variety of fields including waterborne adhesives, paints, catalysis of chemical reactions, and protein separation. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 1535–1543, 2009  相似文献   

8.
We have investigated the fluorescence emission spectra of pyrene and anthracene dyes covalently bonded to polystyrene (PS) upon phase separation from poly(vinyl methyl ether) (PVME). The specific chemical structure of the fluorescent labels is found to affect the measured phase separation temperature TS, with fluorophores covalently attached in closer proximity to the PS backbone identifying phase separation a few degrees earlier. The sharp increase in fluorescence intensity upon phase separation that occurs for all fluorophores with little change in spectral shape is consistent with a mechanism of static fluorescence quenching resulting from the specific interaction with a nearby quenching molecular unit. Based on recent work that has identified a weak hydrogen bond occurring between the aromatic hydrogens of PS and the ether oxygen of PVME, we believe a similar weak hydrogen bond is likely occurring between the PVME oxygen and the aromatic dyes providing a local (few nanometer) sensitivity to phase separation. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2011  相似文献   

9.
The segmental dynamics of backbone‐deuterated polystyrenes (d3PS) with varying molecular weights (1.7–67 kg/mol) have been measured in blends with poly(vinyl methyl ether) (PVME). 2H NMR T1 values at 15 and 77 MHz are reported for the pure d3PS and for the dilute d3PS component in PVME matrices. The temperature shift that is needed to superpose the NMR T1 data for the pure d3PS and the d3PS as a dilute component in the blend ranges from 45 to 70 K. In the framework of Lodge/McLeish model, the self‐concentration value for d3PS in these dilute blends with PVME is found to be independent of molecular weight. We thus establish for this system that the substantial influence of molecular weight on the blend segmental dynamics can be explained by homopolymer Tg differences. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 2252–2262, 2007  相似文献   

10.
This article presents thermal diffusivity (D) measurements by flash radiometry for the polymer blend of polystyrene (PS) and poly(vinyl methyl ether) (PVME) with lower critical solution temperature (LCST) phase diagram. Dependence of D on PS content measured at 100°C coincides a phase diagram determined by a cloud point measurement. D value for the blend decreases with increasing PS content and has minimum value at the PS content around 20 wt % from which D increases again with increasing PS content. If the concentration fluctuation between two components in the miscible states at the temperature close to LCST causes the remarkable phonon scattering, the composition dependence of D would resemble the phase diagram. D for the sample in the phase-separated state is larger than that for the miscible state. The larger D in the phase-separated sample would be due to the decrease of the total surface area microscopically contacted to the counter component in the phase-separated state. Dependence of D on temperature for the phase-separated sample is quite different from that of the miscible one. On an isothermal measurement of D for PS/PVME (10 : 90) at 110°C just below the cloud point, D started to increase at time above 100 min and leveled out above 250 min. Isothermal observation of sample film by a differential interference contrast microscopy showed the creation of some structure due to the nucleation and growth of interface at 225 min and it became obvious above 250 min. Thus, the increase in D at 110°C implies that D can sensitively reflect the change in microscopic structures which follows the nucleation and growth of interface. © 1997 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 35 : 1869–1876, 1997  相似文献   

11.
The self-assembly of a binary mixture of polystyreneblock-polybutadiene (SB) and poly(methyl vinyl ether) (PVME) was studied by transmission electron microscopy and time-resolved light scattering. The self-assembly studied involved first microphase separation, in which a microdomain structure composed of polybutadiene block chains (PB) was formed in a matrix composed of polystyrene block chains (PS) and PVME homopolymers, and subsequently macrophase separation of the PVME from the microdomain phase of SB. The microphase separation was induced in a film preparation process using a solution cast method at room temperature. The macrophase separation was induced by rapidly heating the film specimens to above a critical temperature where PVME and PS undergo spinodal decomposition (SD). This complex phase transition, involving microphase separation followed by macrophase separation, was found to generate a superlattice structure (or a modulated structure) with two characteristic spacings: Amacro associated with the SD and Amicro associated with the microphase separation, both being generally time-dependent. The growth of the “macrodomains” was found to be pinned at Amacro ˜ 840 nm due to the elastic effect of the microdomain structure. The microdomain structure with Amicro ˜ 57 nm was found to undergo a morphological transition (a transition between two ordered phases of block copolymers) as a consequence of the local composition change of the two polymers induced by the SD.  相似文献   

12.
The effects of film thickness and composition ratio on the morphology evolution of polystyrene (PS)/poly(vinyl methyl ether) (PVME) blend thin films were investigated. Diverse morphology evolutions including droplet-matrix structure, hole emergence, bicontinuous structure formation, percolation-to-droplet transition could be observed under annealing in two-phase region, depending on film thickness and composition ratio. The mechanism for these morphology variations was related to the complex effects of phase separation, dewetting and preferential wetting. The comparison between the thickness of bottom PVME layer and the twice of gyration radius 2Rg(PVME) played a dominant role in morphology control. Only when the PS/PVME film had specific film thickness and compositional symmetry, phase separation and dewetting could happen in sequence.  相似文献   

13.
Dielectric permittivities and loss tangents of 10 and 30% poly(2,6-dimethyl-1,4-phenylene oxide) (PPO)–polystyrene (PS) blends and 10 and 25% poly(vinyl methyl ether) (PVME)–polystyrene blends have been measured from 80 to 360 K at 1 and 10 kHz. The PPO-PS blends have two secondary relaxations below Tg and the PVME-PS blends have three regions. All blends have a β process which appears near 290 K, is independent of PPO or PVME concentration, and is associated with the local modes of motions of PS chains. It is suggested that the β process of PS allows a dipolar reorientation of the PPO or PS chain segments by creating more favorable surroundings for the motions of the latter. The effect of physical aging in the PPO-PS blend is substantial but the “memory effect” is significantly less. This is due to the lower contribution to tanδ from the β process of the blend.  相似文献   

14.
A combination of optical and atomic force microscopy (AFM) is used for probing changes in the morphology of polymer blend films that accompany phase ordering processes (phase separation and crystallization). The phase separation morphology of a “model” semi‐crystalline (polyethyleneoxide or PEO) and amorphous (polymethylmethacrylate or PMMA) polymer blend film is compared to previous observations on binary amorphous polymer blend films of polystyrene (PS) and polyvinylmethylether (PVME). The phase separation patterns are found to be similar except that crystallization of the film at high PEO concentrations obscures the observation of phase separation. The influence of film defects (e.g., scratches) and clay filler particles on the structure of the semi‐crystalline and amorphous polymer films is also investigated.  相似文献   

15.
In this article, the preparation of nanosized core-shell particles to induce ductility in polystyrene (PS) is described. FTIR spectroscopy, solid-state NMR spectroscopy, and DSC were used to examine the extent of miscibility of PS and poly(butylacrylate)-b-polyolefin diblock copolymers in a blend in which PS was chemically modified by copolymerization with 0.5–5 mol % of p-(hexafluoro-2-hydroxy isopropyl) styrene (HFS). Hydrogen bonding between the hydroxyl-groups and the carbonyl-groups of polybutylacrylate enhanced the miscibility and lead to randomly distributed polyolefin particles surrounded by a homogeneous PBA/PS matrix. Morphological parameters such as the size of the dispersed phase or extent of interpenetration between the components are controllable simply by changing the amount of interacting groups in the blend. The mechanical properties of the prepared blends were also studied. The intrinsic deformation behavior was investigated by compression tests, whereas the microscopic mode of deformation was studied by time-resolved small-angle X-ray scattering. It was shown that the macroscopic strain at break depends to a large extent on the diblock copolymer content and the degree of demixing between the rubber shell and PS matrix. Brittle behavior was observed for PS blends that contain more than 3 mol % HFS and show complete miscibility between the PS matrix and acrylate shell. For the blends showing partial miscibility, the compression tests demonstrated a pronounced decrease in strain softening with increasing diblock copolymer concentration. Furthermore, it was illustrated that dependent on the degree of demixing the microscopic deformation mode changes from crazing to cavitation induced shear yielding. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 2137–2160, 2004  相似文献   

16.
Polymer–silicate nanocomposites based on poly (ethylene oxide), PEO, poly(methyl methacrylate), PMMA, and sodium montmorillonite clay were fabricated and characterized to investigate the effect of nanolayered silicates on segmental dynamics of PEO/PMMA blends. X‐ray results indicate the formation of an exfoliated morphology in the nanocomposites. At low silicate contents, an enhancement in segmental dynamics of blend nanocomposites and also PEO, minor component in blend, is observed at temperature region below blend glass transition. This result can be attributed to the improvement of the confinement effect of rigid PMMA matrix on the PEO chains by introducing a low amount of layered silicates. On the other hand, at high silicate contents, an enhancement in segmental dynamics of blend nanocomposites and PEO is observed at temperature region above blend glass transition. This behavior could be interpreted based on the reduction of monomeric friction between two polymer components, which can facilitate segmental motions of blend components in nanocomposite systems. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2011  相似文献   

17.
Blends of organosilicon polymers with polystyrene, PS, and poly(2,6-dimethyl-1,4-phenylene oxide), PPE, were investigated by transmission electron microscopy and differencial scanning calorimetry. Blends with poly(tetramethylsilphenylenesiloxane), PTMPS, showed a morphology characterized by globular domains dispersed in the organic matrix. An apparent homogeneous system was observed when poly(dimethylsilphenylene), PDSP, was mixed with PPE. A crystalline phase was found in samples with a higher PDSP content. The morphology of PS/PDSP blends with low PDSP content showed a dendritic phase dispersed in the PS-rich matrix. © 1997 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 35: 2609–2616, 1997  相似文献   

18.
The effect of thermal treatment on the phase separation process of the components of a polymer blend was investigated using electrostatic force microscopy (EFM). EFM technique is an advance on conventional atomic force microscopy, which enables us to measure locally the dielectric properties of the samples under investigation providing compositional information. In this work, we studied the phase separation process of the polymer blend thin films made of polystyrene and poly(vinyl acetate) (PS/PVAc) (75/25 weight fraction). The samples were subjected to different thermal treatments. It was found that at low annealing temperature, PVAc forms many small islands within PS matrix. As the annealing temperature increases, the number of PVAc islands decreases with an increase in the size of the islands. These islands take spherical‐like shape when annealed at a temperature well above the glass transition temperatures of both the component polymers. Despite these morphological/topographical changes, EFM images evidence that there is no interdiffusion which was further confirmed by quantitatively measuring the value of the dielectric permittivity across the interphase. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 49: 1332–1338, 2011  相似文献   

19.
Anisotropic phase separation of polystyrene/poly(vinyl methyl ether) (PS/PVME) blends was induced by photoisomerization of trans-stilbene moieties labeled on the PS chains (abbreviated hereafter as PSS chains) using linearly polarized light. As temperature increases, the anisotropy becomes weaker and eventually disappears at 10°C above the glass transition of the PSS component. It was concluded that the elastic stress associated with the spatial distribution of the reaction is responsible for this morphological anisotropy.  相似文献   

20.
Polymer blends represent an important class of materials in engineering applications. The incorporation of clay nanofiller may provide new opportunities for this type of materials to enhance their applications. This article reports on the effects of clay on the structure and properties of compatibilized and noncompatibilized polymer blends and presents a detailed process for quantitative analysis of the elastic moduli of polymer blend/clay nanocomposites, based on immiscible polystyrene/polypropylene (PS/PP) blends with or without maleated PP as the compatibilizer. The results show that in the noncompatibilized PS/PP/clay nanocomposite clay locates solely in the PS phase, whereas in the compatibilized nanocomposite clay disperses in both phases. The addition of clay to both polymer blends reduces the domain size significantly, modifies the crystallinity and improves the stiffness. The Mori–Tanaka and Christensen's models offer a reasonably good prediction of the elastic moduli of both types of nanocomposites. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2012  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号