首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 769 毫秒
1.
Non‐isothermal ultra‐fast cooling crystallization tests were conducted on three blown film grade bimodal high density polyethylene (HDPE) resins using a fast differential scanning calorimeter, the Flash DSC. Non‐isothermal tests were performed at cooling rates between 50 and 4000°K/s, and the data were analyzed using the modified Avrami model by Jeziorny (Polymer, 1978 , 19, 1142). Non‐isothermal data were used to propose a new method named crystallization–time–temperature–superposition, and the two activation energies were obtained for each of the resins. This is very useful for obtaining theoretical crystallization kinetics data at different cooling rates, allowing its use in ultra‐fast cooling polymer processes such as blown film. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55, 1822–1827  相似文献   

2.
The morphological behavior of a series of polymer‐layered silicate nanocomposites (PLSNs) has been investigated. The goal was to probe the effect of “textured” silicate surfaces on PLSN morphology. The nanocomposites were fabricated by mixing montmorillonite clay that was carefully modified with tailor‐made polystyrene (PS) surfactants into a PS homopolymer matrix, where the chemical similarity of the matrix polymer and surfactants assures complete miscibility of surfactant and homopolymer. To examine the effect of silicate surface “texture,” clay was modified with combinations of long and short surfactants. The samples were then direct melt annealed to allow the equilibrium morphology to develop, and characterized by small‐angle X‐ray scattering. Based on the implications of the Balazs model and other work on the wetting behavior of polymer melts with longer surfactants and textured surfaces we expected that the intercalation of the homopolymer matrix material into the modified clay would be promoted. Extensive characterization of both the modified clays as well as the resultant nanocomposites clearly show that the modified clays exhibit a high degree of order, but also that only phase‐separated morphologies are formed in the corresponding nanocomposites. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 4075–4083, 2004  相似文献   

3.
The crystalline‐phase transition in polyamide‐66/montmorillonite nanocomposites before melting was investigated by in situ X‐ray diffraction and is reported for the first time in this work. The phase‐transition temperature in the nanocomposites was 170 °C, 20 °C lower than that in polyamide‐66. The lower phase‐transition temperature of the nanocomposites could be attributed to the γ‐phase‐favorable environment caused by silicate layers. Meanwhile, the addition of silicate layers changed the crystal structure of the polyamide‐66 matrix and influenced the phase‐transition behavior. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 63–67, 2003  相似文献   

4.
The aim of this work is to investigate the effects of elongational flow on the nanoscale arrangement of the silicate inside polyamide‐based nanocomposites. Hybrids, at different loadings of a commercial organoclay, were produced by melt compounding using two polyamide matrices, a nylon‐6, and a copolyamide with similar molecular weight and rheological properties. The elongational flow characterization was performed under both isothermal and nonisothermal conditions by using, respectively, an elongational rheometer (SER) and a fiber‐spinning technique. The extensional rheological response of melt‐compounded nanocomposites, correlated to TEM and X‐ray analyses, was used to probe the nanostructural modifications developed during the uniaxial stretching. The results demonstrated that isothermal and nonisothermal elongational flow can modify the nanomorphology of the nanocomposite hybrids affecting the degree of silicate exfoliation as well as the extent of silicate orientation upon the stretching direction. The entity of structural modifications induced by the stretching were highly dependent on the initial nanomorphological state and on the polymer‐clay affinity. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 981–993, 2009  相似文献   

5.
A Brabender mixer was used to deagglomerate and disperse organomodified montmorillonite Cloisite® 30B (3 wt %) in polylactide (PLA) matrix to obtain nanocomposite systems. The influence of compounding conditions such as blending time (6.5, 10, 20, and 30 min) and compression molding on the nanostructure of nanocomposites was investigated. Molecular weight changes of the PLA matrices induced by melt compounding were determined. Good rheological behavior of the PLA during melt blending with Cloisite® 30B was observed. Prolongation of the blending process improved homogenization of the nanocomposites with the formation of more intercalated and exfoliated structures as revealed by transmission electron microscopy (TEM) and X‐ray analysis. Some orientation of the silicate nanoplatelets induced by compression molding of the nanocomposites was revealed by TEM. It was found that an increase of dispersion degree of the silicate layers modified pronouncedly the physical properties of nanocomposites through an increase of thermal stability as revealed by the thermogravimetric analysis, a decrease of crystallizability of the PLA matrix during melt‐crystallization and upon heating from the glassy, amorphous state. Rheological properties of the nanocomposites determined during dynamic frequency sweep appeared to be very sensitive to the nanostructure evolution. Moreover, the scanning electron microscopy and light microscopy investigations showed the presence of the micron‐size inorganic contaminations in the nanocomposites originating from organoclay Cloisite® 30B. These inclusions were resistive to deagglomeration during melt processing. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 3392–3405, 2006  相似文献   

6.
A photobleaching technique was used to measure the rotational dynamics of rubrene dispersed in thermoset resins. The matrices were polymerized from mixtures of two monomers with five different compositions. At temperatures below the glass‐transition temperature, probe rotational correlation times were shorter and showed a much weaker temperature dependence than those observed in glassy homopolymers. The probe correlation functions became increasingly nonexponential as the amount of the minor component in the matrix increased, presumably because a more heterogeneous set of environments resulted. Dynamics in the single‐component sample were quite homogeneous at room temperature. In contrast to homopolymer systems, a bimodal distribution of local relaxation times developed with the addition of the second component. At a given polymer composition, this bimodal distribution changed shape with temperature in a reversible manner. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 2232–2239, 2000  相似文献   

7.
Polypropylene‐layered silicate nanocomposites consisting of three components—pure polypropylene, maleated polypropylene, and organically modified silicate—were prepared by the melt‐intercalation method to investigate melt‐extensional properties such as melt strength, neck‐in test, and orientation behavior. The nanocomposites showed an enhanced tensile modulus, enhanced storage modulus, much enhanced melt tension, and reduced neck‐in during the melt processing as compared with neat polymer. The uniaxial drawing induced the silicate surface to align parallel to the sheet surface. The c and a* axes of the polypropylene crystals were bimodally oriented to the flow direction, and the b axes were oriented to the thickness direction. The bimodal orientation of the polypropylene crystal was enhanced with the concentration of silicates. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 158–167, 2005  相似文献   

8.
Waterborne acrylic‐alkyd nanocomposites are expected to combine the positive properties of alkyd resins and acrylic polymers. In this work, the kinetics of the miniemulsion polymerization used to synthesize these nanocomposites and the effect of the process variables on the polymer architecture and particle morphology was investigated. It was found that resin hydrophobicity and the type of initiator strongly affected the microstructure of these materials. The mechanisms responsible for these effects were discussed. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 4871–4885, 2009  相似文献   

9.
Isothermal ultra‐cooling crystallization tests were conducted on three blown film grade bimodal HDPE resins using an ultrafast scanning calorimeter, the Flash DSC. Isothermal tests were performed to study the regime transition, the thermal nucleation and the spherulitical growth using the Hoffman‐Lauritzen theory in a range between 90 °C and 116 °C. Temperature profile estimations using such data were in good agreement with actual blown film process data. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 2425–2431  相似文献   

10.
Structure, thermal properties, and influence of layered double hydroxide (LDH) fillers on photocrosslinking behavior of high‐density polyethylene (HDPE)/LDH nanocomposites have been studied in the present article. The X‐ray diffraction and transmission electron microscopy analysis demonstrate that the completely exfoliated HDPE/LDH nanocomposites can be obtained by controlling the organomodified LDH loading via melt‐intercalation. The data from the thermogravimetric analysis show that the HDPE/LDH nanocomposites have much higher thermal stability than HDPE sample. When the 50% weight loss was selected as a comparison point, the decomposition temperature of HDPE/LDH sample with 5 wt % LDH loading is ~40 °C higher than that of HDPE sample. The effects of UV‐irradiation on the HDPE/LDH nanocomposites show that the photoinitiated crosslinking can destroy the completely exfoliated structure to form the partially exfoliated structure, which decreased the thermal stability of the nanocomposites. However, the thermal stability of photocrosslinked samples can increase with increasing the UV‐irradiation time. The effect of LDH loading on the gel content of UV‐irradiated nanocomposites shows that the LDH materials can greatly absorb the UV irradiation and thus decrease the crosslinking efficiency. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 3165–3172, 2006  相似文献   

11.
Synthesis of poly(styrene‐block‐tetrahydrofuran) (PSt‐b‐PTHF) block copolymer on the surfaces of intercalated and exfoliated silicate (clay) layers by mechanistic transformation was described. First, the polystyrene/montmorillonite (PSt/MMT) nanocomposite was synthesized by in situ atom transfer radical polymerization (ATRP) from initiator moieties immobilized within the silicate galleries of the clay particles. Transmission electron microscopy (TEM) analysis showed the existence of both intercalated and exfoliated structures in the nanocomposite. Then, the PSt‐b‐PTHF/MMT nanocomposite was prepared by mechanistic transformation from ATRP to cationic ring opening polymerization (CROP). The TGA thermogram of the PSt‐b‐PTHF/MMT nanocomposite has two decomposition stages corresponding to PTHF and PSt segments. All nanocomposites exhibit enhanced thermal stabilities compared with the virgin polymer segments. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 2190–2197, 2009  相似文献   

12.
Isobutylene isoprene rubber (IIR)‐clay nanocomposites have been prepared successfully by melt intercalation with maleic anhydride‐grafted IIR (Ma‐g‐IIR) and organophilic clay. In IIR‐clay nanocomposites, the silicate layers of the clay were exfoliated and dispersed into the monolayer. The nanocomposites exhibited greater gas barrier properties compared with those of Ma‐g‐IIR. When 15 phr clay was added, gas barrier properties were 2.5 times greater than those of Ma‐g‐IIR. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1182–1188, 2006  相似文献   

13.
A series of intercalated poly(trimethylene terephthalate) (PTT)/clay nanocomposites were prepared in a twin‐screw extruder by the melt mixing of PTT with either quaternary or ternary ammonium salt‐modified clays. The morphology and structure, along with the crystallization and melting behavior, and the dynamic mechanical behavior of the composites were characterized by X‐ray diffraction, transmission electron microscopy, differential scanning calorimetry, and dynamic mechanical thermal analysis. The results showed that the PTT chains could undergo center‐mass transport from the polymer melt into the silicate galleries successfully during the blending and extrusion process. More coherent stacking of the silicate layers was reserved at higher clay concentrations and shorter blend times. Compared with conventionally compounded composites, the nanoscale‐dispersed organophilic clays were more effective as crystal nucleation agents. The influence of the nanosilicates on the crystallization and melting behavior of PTT became distinct when the concentration of clay was around 3 wt %. The changes in the crystallization behavior of the polymer/clay nanocomposites depended not only on the size of the silicates but also on the intrinsic crystallization characteristics of the polymers. The resulting nanocomposites showed an increase in the dynamic modulus of PTT and a decrease in the relaxation intensity (both in loss modulus and loss tangent magnitude). © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 2275–2289, 2003  相似文献   

14.
Organic/inorganic hybrid star‐like nanocomposites from two different octafunctional cubic silsesquioxane (CSSQ) nano‐cage cores and poly(methyl methacrylate) (PMMA) were synthesized using atom transfer radical polymerization (ATRP) at mild conditions, in which octafunctional octakis(3‐hydroxypropyldimethylsiloxy)octasilsesquioxane (OHPS) and octa(aminophenyl)silsesquioxane (OAPS) nano‐cages were used as ATRP initiators. The polymerization was carried out at 50 °C in acetonitrile/water mixture. 1H‐NMR and GPC were employed to characterize the obtained nanocomposites. GPC data revealed that the resulting nanocomposites exhibit unimodal and narrow molecular weight distributions indicating well‐controlled synthesis and well‐defined hybrid nanocomposites with star architecture. The influence of CSSQ nano‐cages on the thermal property of nanocomposites was investigated using differential scanning calorimetry and thermal gravimetric analysis (TGA). It was observed that the nanocomposites exhibit significantly higher glass transition temperature compared with its linear counterpart because of slow relaxation caused by the star‐like architecture. TGA study, however, did not reveal any significant improvement in thermal stability of nanocomposites as compared with linear PMMA. Finally, field emission scanning electron microscopy images of fractured surfaces of nanocomposite sample films showed well dispersed CSSQ nano‐cages in PMMA matrix without phase separation. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 766–776, 2008  相似文献   

15.
Two polyisobutylene‐grafted graphene nanocomposites were prepared by CuBr‐catalyzed atom transfer nitroxide radical coupling (ATNRC) and Cu‐catalyzed single electron transfer‐nitroxide radical coupling (SET‐NRC) chemistry under mild conditions, respectively, through the grafting‐onto strategy. Graphene oxide was first reduced to graphene by diazonium addition reaction followed by treating graphene with ethyl 2‐bromoisobutyrate for introducing Br‐containing groups onto the surface to give G‐Br. The presynthesized well‐defined functional polyisobutylene (PIB) possessing 2,2,6,6‐tetramethylpiperidine‐1‐oxyl terminal group obtained via cationic polymerization of isobutylene was then coupled with G‐Br through ATNRC or SET‐NRC at room temperature to afford polymer‐modified graphene, G‐PIB. SET‐NRC method has a faster coupling rate using cheaper reagent (Cu wire instead of CuBr) in comparison with ATNRC approach. Detailed characterizations including FT‐IR, Raman, 1H NMR, TGA, AFM, and TEM assured us of successful anchoring of PIB chains onto the surface of graphene sheets. The resulting G‐PIB nanocomposites still maintain the separated single layers in dispersion and the dispersibilities in organic solvents are significantly improved. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 4505–4514  相似文献   

16.
Low‐density polyethylene (LDPE) is the preferred type of polyolefin for many medical and electrical applications because of its superior purity and cleanliness. However, the inferior thermo‐mechanical properties as compared to, for example, high‐density polyethylene (HDPE), which arise because of the lower melting temperature of LDPE, constitute a significant drawback. Here, we demonstrate that the addition of minute amounts of HDPE to a LDPE resin considerably improves the mechanical integrity above the melting temperature of LDPE. A combination of dynamic mechanical analysis and creep experiments reveals that the addition of as little as 1 to 2 wt% HDPE leads to complete form stability above the melting temperature of LDPE. The investigated LDPE/HDPE blend is found to be miscible in the melt, which facilitates the formation of a solid‐state microstructure that features a fine distribution of HDPE‐rich lamellae. The absence of creep above the melting temperature of LDPE is rationalized with the presence of tie chains and trapped entanglements that connect the few remaining crystallites. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55, 146–156  相似文献   

17.
Novel fluorinated coating containing well‐dispersed silicate nanolayers is successfully produced via in‐situ free radical polymerization of 2,2,2‐trifluoroethyl methacrylate in the presence of vinylbenzyl‐functionalized montmorillonite with different loading. The organic modification of sodium montmorillonite is achieved through an ion exchange reaction with triphenylvinylbenzylphosphonium chloride as surfactant prepared before use by reaction with vinylbenyl chloride and phosphine. The following in‐situ polymerization in the presence of organomodified clay leads to fluorinated nanocomposites with of partially exfoliated and intercalated morphologies, as determined via XRD and TEM analysis. The nanoscale dispersion of clay layers is also evidenced by thermal analysis; a moderate decrease of the glass transition temperature about 2–8 °C compared to their virgin PMATRIF and an improvement of their thermal stability as evidenced by TGA. The wettability of the nanocomposite films is also studied by contact angle measurements with water. The incorporation of organomodified clays not only increases the hydrophobicity of the fluorinated polymers but also improves the surface properties of obtained nanocomposites. Compared the virgin homopolymer, the mechanical properties of the nanocomposites are reduced by addition of organomodifed clay at temperature from 30 to 60 °C, whereas this trend is gradually decreased at higher temperature. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 411–418  相似文献   

18.
Nylon‐66 nanocomposites were prepared by melt‐compounding nylon‐66 with an alkyl ammonium surfactant pretreated montmorillonite (MMT). The thermal stability of the organic MMT powders was measured by thermogravimetric analysis. The decomposition of the surfactant on the MMT occurred from 200 to 500 °C. The low onset decomposition temperature of the organic MMT is one shortcoming when it is used to prepare polymer nanocomposites at high melt‐compounding temperatures. To provide greater property enhancement and better thermal stability of the polymer/MMT nanocomposites, it is necessary to develop MMT modified with more thermally stable surfactants. The dispersion and spatial distribution of the organic MMT layers in the nylon‐66 matrix were characterized by X‐ray diffraction. The organic MMT layers were exfoliated but not randomly dispersed in the nylon‐66 matrix. A model was proposed to describe the spatial distribution of the organic MMT layers in an injection‐molded rectangular bar of nylon‐66/organic MMT nanocomposites. Most organic MMT layers were oriented in the injection‐molding direction. Layers near the four surfaces of the bar were parallel to their corresponding surfaces; whereas those in the bulk differed from the near‐surface layers and rotated themselves about the injection‐molding direction. The influence of the spatial distribution of the organic MMT on crystallization of nylon‐66 was also investigated. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 1234–1243, 2003  相似文献   

19.
A unique in situ multiaxial deformation device has been designed and built specifically for simultaneous synchrotron small angle X‐ray scattering (SAXS) and wide angle X‐ray scattering (WAXS) measurements. SAXS and WAXS patterns of high‐density polyethylene (HDPE) and HDPE/clay nanocomposites were measured in real time during in situ multiaxial deformation at room temperature and at 55 °C. It was observed that the morphological evolution of polyethylene is affected by the existence of clay platelets as well as the deformation temperature and strain rate. Martensitic transformation of orthorhombic into monoclinic crystal phases was observed under strain in HDPE, which is delayed and hindered in the presence of clay nanoplatelets. From the SAXS measurements, it was observed that the thickness of the interlamellar amorphous region increased with increasing strain, which is due to elongation of the amorphous chains. The increase in amorphous layer thickness is slightly higher for the nanocomposites compared to the neat polymer. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2011  相似文献   

20.
The solid‐state viscoelastic properties are examined for intercalated nanocomposites based on a copolyester and (2‐ethyl‐hexyl)dimethyl hydrogenated‐tallow ammonium montmorillonite. The nanocomposites are prepared via the direct melt intercalation technique using a conventional twin‐screw extruder. Dynamic mechanical thermal analysis of the nanocomposites is conducted using two different test setups. The dynamic mechanical relaxation spectra show an increase in the storage modulus of the nanocomposite over the entire temperature range under study as compared to the pristine polymer (except in the transition region from 70 to 80 °C). These results are analyzed using the empirical Havriliak–Negami (HN) equation. The four temperature independent HN parameters (α, β, E0, and E) and one temperature dependent parameter (τ, the relaxation time) are determined by solving the HN equation for each temperature over the range of temperatures. The calculated moduli results fit well with the experimental values of the relaxation spectra for the nanocomposites. This study shows that the HN model can be applied to polymer layered silicate nanocomposites, and it can be used to predict their dynamic mechanical properties over a wide range of temperatures and frequencies a priori. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 2657–2666, 2004  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号