共查询到20条相似文献,搜索用时 15 毫秒
1.
H. C. Shen C. C. McDowell S. S. Sankar B. D. Freeman R. J. Kumpf D. A. Wicks C. W. Lantman C. Noël 《Journal of Polymer Science.Polymer Physics》1996,34(7):1347-1361
An aromatic copolyester composed of 25 mol % phenyl hydroquinone, 10 mol % isophthalic acid, 40 mol % chloroterephthalic acid, and 25 mol % t-butyl hydroquinone (PICT) has been synthesized. This amorphous, glassy polymer is soluble in common organic solvents such as methylene chloride. Thin, solution-cast films may be prepared which are in a metastable, vitrified, optically isotropic state. On first heating of an isotropic film at 20°C/min in a calorimeter, one glass transition is observed at low temperature (approximately 49°C) and is ascribed to the glass/rubber transition of the metastable, isotropic polymer. This thermal event is followed by a small exotherm due to the development of order during the scan, which results in a second Tg at approximately 125°C. This Tg is associated with the glass/rubber transition of the ordered polymer. Nematic order can be developed by thermal annealing. The lower Tg increases toward the upper Tg as annealing time is increased. For an initially isotropic film annealed at 90°C, the increase of the lower Tg with annealing time and the increase in birefringence observed by optical microscopy are governed by similar kinetics. Isotropization occurs in the temperature range of 250–300°C. The nematic polymer is slightly more dense than its isotropic analog. No detectable differences between isotropic and nematic samples were observed in rotating frame proton spin lattice relaxation times. © 1996 John Wiley & Sons, Inc. 相似文献
2.
《Journal of Polymer Science.Polymer Physics》2018,56(4):297-307
The elasticity of polypeptide chains is usually characterized by the worm‐like chain model that was proposed first to describe the elasticity of double‐stranded DNA. However, the molecular dynamics simulation data on the elasticity of the polypeptide chains are deviated significantly away from the theoretical data obtained based on the worm‐like chain model. Here, we provide a revised worm‐like chain model by considering entropic, enthalpic, and hydrophobic effects and the effect of the compressing force applied to the polypeptide chains. The theoretical data obtained based on the revised model are in good agreement with the molecular dynamics simulation data. Additionally, we reveal that, besides the positive‐force regime in the elasticity of polypeptide chains, the negative‐force regime also plays important roles in the biological functions of proteins. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018 , 56, 297–307 相似文献
3.
G. R. Cantrell C. C. McDowell B. D. Freeman C. Noël 《Journal of Polymer Science.Polymer Physics》1999,37(6):505-522
Thermal transitions of a glassy, main chain, liquid crystalline, random copolyester, HIQ‐40, have been characterized. HIQ‐40 is made from 40 mol percent p‐hydroxybenzoic acid (HBA) and 30 mol % each of p‐hydroquinone (HQ) and isophthalic acid (IA). This polymer is soluble in organic solvents, permitting the preparation of thin, solution‐cast films that are in a glassy, metastable, optically isotropic state. On first heating of an isotropic HIQ‐40 film in a calorimeter, one glass transition is observed at low temperature (approximately 42°C), and is ascribed to the glass/rubber transition of the isotropic polymer. A cold crystallization exotherm centered near 150°C is observed. This is associated with the development of low levels of crystalline order. A broad melting endotherm is centered at about 310°C; this endotherm marks the melting of crystallites and the transformation to a nematic fluid. A nematic to isotropic transition was not observed by calorimetry. After quenching from the nematic melt, a Tg is observed in the range of 110–115°C and is associated with the glass/rubber transition of the nematically ordered polymer. Annealing optically isotropic films at temperatures above the isotropic glass transition results in the systematic development of axial order. In these annealed samples, Tg increases rapidly until it is near the annealing temperature, then Tg increases more slowly at longer annealing times. In as‐cast films annealed at 120–135°C, the light intensity transmitted through a sample held between crossed polarizers in an optical microscope (a qualitative measure of birefringence and, in turn, axial order) initially increases rapidly and uniformly throughout the sample and, at longer annealing times, approaches asymptotic values that are higher at higher annealing temperatures. The increase in transmitted intensity is ascribed to the development of axial order. The uniform increase in transmitted intensity suggests that ordering occurs by a rather global process and not via a nucleation and growth mechanism. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 505–522, 1999 相似文献
4.
5.
The dynamics of deformations induced by DC electrical fields in homeotropically aligned layers containing a flexoelectric nematic material with negative dielectric anisotropy has been studied numerically. The rise time constants, characterising the development of deformations after switching on the external voltage, and the decay time constants, describing the decay of deformation after switching off the voltage, were calculated as a function of the parameters essential for the behaviour of the layer. In particular, the influence of flexoelectricity was studied. It was found that the stronger the flexoelectric properties of the nematic, the lower is its viscosity, the higher is the bias voltage, the weaker is the surface anchoring, the thinner is the layer and the higher is the ion concentration, the more rapid was the onset of deformation. Similarly, the lower the viscosity, the thinner is the layer, the stronger the anchoring and the larger the ion content, the more rapid was the decay of deformation. Neither the voltage previously applied nor the flexoelectric properties were found to affect the decay time. 相似文献
6.
ABSTRACTOrientational ordering of rod-like nanoparticles in the lamellae phase of diblock copolymers has been considered theoretically using the model of a nanoparticle with two interaction centres. It has been shown that strongly anisotropic nanoparticles order spontaneously in the boundary region between the blocks where the orientational order is induced by the interface and by the interaction with monomer units in different blocks. The nematic order parameter possesses opposite signs in adjacent blocks which means that the nanorods are aligned parallel or perpendicular to the boundary between the blocks on different sides of their interface. Concentration and nematic order parameter profiles have been calculated numerically for different values of the nanoparticle length and compared with the results of recent computer simulations and with the results of the previous molecular theory based on nanoparticles of spherical shape. 相似文献
7.
Fu-Lung Chen A. M. Jamieson M. Kawasumi V. Percec 《Journal of Polymer Science.Polymer Physics》1995,33(8):1213-1223
The twist and bend viscosities of dilute solutions of cyclic and hyperbranched liquid crystal polymers (LCP) dissolved in low molar mass nematic solvents were determined via dynamic light scattering analysis. These results were compared to those of linear chains with similar chemical repeat structures. The nematic solvent used was 4′-pentyloxy-4-cyanobiphenyl (50CB). The cyclic LCP oligomers, Cy TPB10, have a mesogenic group, 1-(4-hydroxy-4′-biphenyl)-2-(4-hydroxyphenyl) butane, separated by flexible decamethylene spacers. The twist viscosity of the cyclic Cy-TPB10 oligomers increases with molecular weight more strongly than the linear, TPB-10, suggesting that the hydrodynamic behavior of Cy-TPB10 is closer to that of a rigid rod than TPB10. Surprisingly, the intrinsic bend viscosity [ηbend] of Cy-TPB10 decreases with molecular weight, in contrast to the positive dependence for linear TPB10. This may reflect the higher strain energy in the smaller ring sizes. The hyperbranched LCP, TPD-b-8, is also based on the mesogen 10-bromo-1-(4-hydroxy-4′-biphenyl)-2(4-hydroxyphenyl) decane but with octyl groups at the chain ends. We compare the viscoelastic behavior of dilute nematic solutions of TPD-b-8 in 50CB against that of a linear main-chain LCP, TPB7, with the same mesogenic group but with heptamethylene spacers. The viscometric properties of TPD-b-8/50CB and TPB7/50CB are quite different. The results suggest that each chain is prolate (i. e., R∥ > R⊥) but that TPD-b-8 has a smaller chain anisotropy than that of TPB7. © 1995 John Wiley & Sons, Inc. 相似文献
8.
Daniel A Paterson Jordan P Abberley William TA Harrison John MD Storey 《Liquid crystals》2017,44(1):127-146
ABSTRACTThe synthesis and characterisation of several members of the 1,ω-bis(4-cyanobiphenyl-4′-yl) alkane (CBnCB) and the 1-(4-cyanobiphenyl-4′-yloxy)-ω-(4-cyanobiphenyl-4′-yl) alkane (CBnOCB) homologous series are reported. The new odd members described CB5CB, CB13CB, CB4OCB, CB8OCB and CB10OCB all exhibit twist-bend nematic and nematic phases. The members of these series already reported in literature, CB7CB, CB9CB, CB11CB and CB6OCB, were also prepared in order to allow for a direct comparison of their transitional properties. The properties of these dimers are also compared to those of the corresponding members of the 1,ω-bis(4-cyanobiphenyl-4,-yloxy) alkanes (CBOnOCB). For any given total spacer length, for odd members of these series, the nematic–isotropic transition temperatures and associated entropy changes are greatest for the CBOnOCB dimer and lowest for the CBnCB dimer. These trends are understood in terms of molecular shape. For short spacer lengths, the twist-bend nematic–nematic transition temperature (TNTBN) is higher for the CBnOCB series than for the CBnCB series but this is reversed as the spacer length increases. Of the CBOnOCB dimers, a virtual value of TNTBN was estimated for CBO3OCB and TNTBN was measured for CBO5OCB. These values are considerably lower than those observed for the corresponding members of the CBnCB or CBnOCB series. The dependence of TNTBN on molecular structure is discussed not only in terms of the molecular curvature but also in the ability of the molecules to pack efficiently. As the temperature range of the preceding nematic phase increases, so the twist-bend nematic–nematic transition entropy change decreases and the transition approaches second order for the longer spacers. For comparative purposes, the transitional behaviour of the even-membered dimers CB6CB, CB5OCB and CBO4OCB is reported and differences accounted for in terms of molecular shape. 相似文献
9.
10.
《Journal of Polymer Science.Polymer Physics》2018,56(18):1251-1264
We study the phase behavior, the characteristic times, and the rheological properties under the steady shear flow of the mixtures consisting of telechelic and monofunctional associating polymers by a coarse‐grained molecular dynamics simulation. The mixtures form the transient networks, the closely packed spherical micelles, and the wormlike micelles. We confirm the molecular origins of the several characteristic times of the mixtures. The dependencies of the characteristic times on the composition ratio between telechelic and monofunctional associating polymers show good agreement with reported experimental results. Under the steady shear flow, the mixtures show the shear thinning induced by the change of the spatial configuration of the micelles. The telechelic associating polymers especially play an important role in connecting the micelles at the shear thinning regime and enhance the steady shear viscosity. Furthermore, at the wormlike micellar region, the mixtures show the second shear thinning initiated by the transformation of the association conformation of the telechelic associating polymers. 相似文献
11.
Daniel A. Paterson Rebecca Walker Jordan P. Abberley Jérémy Forestier William T. A. Harrison John M. D. Storey 《Liquid crystals》2017,44(12-13):2060-2078
ABSTRACTThe synthesis and characterisation of two new sets of non-symmetric liquid crystal dimers is reported, the 1-(4-substitutedazobenzene-4′-yloxy)-6-(4-cyanobiphenyl-4′-yl)hexanes (CB6OABX) and 1-(4-substitutedazobenzene-4′-yloxy)-6-(4-cyanobiphenyl-4′-yloxy)pentanes (CBO5OABX). The terminal substituents are methyl, methoxy, butyl, butyloxy, nitrile and nitro. All the CB6OABX dimers exhibit twist-bend nematic (NTB) and nematic (N) phases. The CBO5OABX dimers also all show an N phase but only the butyl and butyloxy homologues exhibit the NTB phase. The transitional behaviour of the non-symmetric dimers is compared to that of the corresponding symmetric dimers, the 1,5-bis(4-substitutedazobenzene-4′-yloxy)pentanes (XABO5OABX) and either 1,7-bis(4-cyanobiphenyl-4′-yl)heptane or 1,5-bis(4-cyanobiphenyl-4′-yloxy)pentane. The XABO5OABX dimers all show a nematic phase and in addition, the butyl homologue exhibits a smectic A phase. The difference in transitional behaviour between the CB6OABX and CBO5OABX dimers is attributed to the difference in their molecular shapes arising from different bond angles between the para axis of the cyanobiphenyl unit and the first bond in the spacer. Specifically, the all-trans conformation of a CBO5OABX dimer is more linear than that of the corresponding CB6OABX dimer. Differences within each set of dimers are attributed to changes in the average molecular shape and the strength of the mixed mesogen interaction on varying the terminal group. Crystal structures are reported for CB6OABOMe, CBO5OABNO2 and MeOABO5OABOMe. 相似文献
12.
R. Sadamoto A. Uedono T. Kawano S. Tanigawa Y. Kosaka T. Uryu 《Journal of Polymer Science.Polymer Physics》1996,34(9):1659-1664
Free volumes in thermotropic side-chain liquid-crystalline polymers were probed by positron annihilation technique. Lifetime spectra of positrons were measured in the temperature range between 130 and −60°C in cooling. For a nematic liquid-crystalline polymer (polyacrylate), the lifetime of ortho-positronium (τ3) was decreased with decreasing temperature above the glass transition temperature (Tg, 21°C) with larger temperature coefficient than that below Tg. The intensity of ortho-positronium (I3) was constant above Tg. These facts mean that the size of the free-volume holes decreased with the decreasing the temperature but the concentration was almost constant in nematic phase. For a smectic liquid-crystalline polymer (poly(p-methylstyrene) derivative), a discontinuous decrease in the value of τ3 and that of I3 were observed at 107°C, which was the transition temperature from smectic to crystalline phase. Such discontinuous changes were not observed for the polyacrylate specimen. This difference was considered to be attributed to the higher-ordered structure of the smectic phase. © 1996 John Wiley & Sons, Inc. 相似文献
13.
Hyun Tae Jung Bong June Sung Arun Yethiraj 《Journal of Polymer Science.Polymer Physics》2011,49(11):818-825
The diffusion of penetrants in polymers is of technological importance in many areas including chromatography and fuel cell membranes. In this work, the effect of chain conformations on tracer diffusion is studied using molecular simulations and a percolation theory. The polymeric matrix is composed of tangent hard sphere chains that are fixed in space; conformations are changed by tuning the stiffness of the chains. The tracer diffusion coefficient is relatively insensitive to the chain stiffness when polymer chains are frozen as in polymer glasses with the local chain dynamics switched off. An analysis of the matrix using percolation theory shows that the polymer volume fraction at the free volume percolation threshold is also relatively insensitive to the chain stiffness, consistent with the diffusion results. This is surprising because the site‐site intermolecular pair correlation functions in the matrix are quite sensitive to the chain stiffness. In contrast, the tracer diffusion coefficient in a melt of mobile chains decreases significantly as the chain stiffness is increased. We conclude that tracer diffusion is only weakly correlated with the chain conformations and local chain dynamics plays an important role. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2011 相似文献
14.
The choice of lateral and terminal substitution can have a major influence on the structure of a liquid crystalline supermolecule, which in turn can induce radically different phase behaviour. In this study we use molecular dynamics simulations to investigate the shape of a liquid crystal dendrimer within a liquid crystalline solvent. A coarse‐grained (CG) simulation model is employed to represent a third generation dendrimer in which 32 mesogenic groups are bonded to chains at the end of each branch of the dendrimer. In this CG‐model the liquid crystal groups can be appended either terminally or laterally. This bonding option is used to generate the structure of four separate systems: (a) a dendrimer with 32 terminal mesogens, (b) a dendrimer with 32 laterally appended mesogens, (c) and (d) dendrimers with 16 lateral and 16 terminal groups represented with laterally bonded sites on one side of the molecule, model (c) or next to terminally bonded sites, model (d). The simulations show that the dendrimer is able to change shape in response to molecular environment and that the molecular shape adopted depends critically on the nature of the lateral/terminal susbstitution. 相似文献
15.
Yijing Nie Zhiping Zhou Tongfan Hao Xubo Ye Wenming Yang 《Macromolecular theory and simulations》2016,25(2):187-195
Nowadays, the microscopic mechanism controlling the distribution of local glass transition temperatures (Tgs) across thin polymer films is still unclear and thus large‐scale applications of polymer films are restricted. Dynamic Monte Carlo simulations are performed to investigate the key factors dominating the distribution of layer Tgs in two kinds of capped ultrathin films with and without attractive polymer–substrate interactions, respectively. For the film without polymer–substrate interaction, the interfacial layer Tg is lower than the middle layer Tg. Additionally, the layer Tgs and the layer segment densities below Tg are linearly correlated, indicating that polymer density determines the distribution of layer Tgs. However, for the films with polymer–substrate interactions, the interfacial layer Tg increases dramatically with the raise of interfacial interactions, while the middle layer Tg decreases slightly. The interfacial layer Tg is proportional to the strength of interfacial interaction, while the middle layer Tg is linearly correlated with the segment density of the middle layer below Tg. Namely, interfacial interaction is the main factor dominating the interfacial layer Tg, while segment density controls the middle layer Tg.
16.
Erol Akpinar Cihan Canioz Meric Turkmen Dennys Reis Antônio Martins Figueiredo Neto 《Liquid crystals》2018,45(2):219-229
Lyotropic quaternary mixtures of potassium alkanoates (KCx) and sodium alkyl sulphates (NaCxS), where x is the number of carbon atoms in their alkyl chains, were prepared to investigate the effect of the surfactant alkyl chain length on the stabilisation of lyotropic nematic phases. The lyotropic mixtures investigated were formed by the dissolution of KCx (NaCxS) surfactants in the mixture of Rb2SO4/1-decanol/water (Na2SO4/1-decanol/water), separately. The uniaxial-to-biaxial nematic phase transitions were identified from the temperature dependence of the birefringences of the nematic phases by means of laser conoscopy. The micelle dimensions were obtained from small-angle X-ray scattering measurements. It was observed that the increase in the surfactant alkyl chain length causes the micellar growth in the plane perpendicular to the main amphiphile bilayer. The surfactant alkyl chain length plays a key role on the shape anisotropy of micelles, which triggers the orientational fluctuations that are responsible for the stabilisation of the different lyotropic nematic phases. 相似文献
17.
We have been developing a physical picture on the atomic level of stress relaxation in polymer melts by means of computer simulation of the process in model systems. In this article we treat a melt of freely jointed chains, each with N = 200 bonds and with excluded-volume interactions between all nonbonded atoms, that has been subjected to an initial constant-volume uniaxial extension. We consider both the stress relaxation history σ(t) based on atomic interactions, and the stress history σe(t; NR) based on subdividing the chain into segments with NR bonds each, with each segment regarded as an entropic spring. It is found that at early times σ(t) > σe(t; NR) for all NR, and that, for the remainder of the simulation, there is no value of NR for which σ(t) = σe(t; NR) for an extended period; by the end of the simulation σ(t) has fallen just below the value σe(t; 50). The decay of segment orientation, 〈P2(t; NR)〉, and of bond orientation 〈P2(t; 1)〉, is computed during the simulation. It is found that the decay of the atom-based stress σ(t) is closely related to that of 〈P2(t; 1)〉. This result may be understood through the concept of steric shielding. The change in local structure of the polymer melt during relaxation is also studied. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36 : 143–154, 1998 相似文献
18.
We have developed a simulation technique of multiscale Lagrangian fluid dynamics to tackle hierarchical problems relating to historical dependency of polymeric fluid. We investigate flow dynamics of dilute polymeric fluid by using the multiscale simulation approach incorporating Lagrangian particle fluid dynamics technique (the modified smoothed particle hydrodynamics) with stochastic coarse‐grained polymer simulators (the dumbbell model). We have confirmed that our approach is well in agreement with the macroscopic results obtained by a constitutive equation corresponding to the dumbbell model, and observed that microscopic thermal fluctuation appears in macroscopic fluid dynamics as dispersion phenomena. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 886–893, 2010 相似文献
19.
20.
Erol Akpinar Kemal Otluoglu Meric Turkmen Cihan Canioz Dennys Reis Antônio Martins Figueiredo Neto 《Liquid crystals》2016,43(11):1693-1708
The lyotropic mixture of potassium laurate/decanol/water presenting only the uniaxial nematic calamitic phase was doped with one strong (potassium chloride, KCl) and 11 weak electrolytes with phenyl-rings (DL-mandelic acid, benzoic acid, DL-phenyllactic acid, phenylacetic acid, phenol and phenylmethanol) and with cyclohexyl-ring (RS-hexahydromandelic acid, cyclohexanecarboxylic acid, cyclohexaneacetic acid, cyclohexanol and cyclohexylmethanol), separately. We also chose two nonpolar dopant molecules, benzene and cyclohexane, for the comparison of them with weak electrolytes, since they are located in the hydrocarbon core of the micelle. The nematic phase sequences, in particular the presence of the biaxial nematic phase, were investigated as a function of the dopant molar concentration and temperature. The laser conoscopy and small-angle X-ray scattering techniques were used to characterise the different nematic phases. Weak electrolytes having –COOH group as polar part were found to be very effective in stabilising the three nematic phases (two uniaxial and a biaxial). Guest molecules with only the –OH group did not show any effect on the stabilisation of other nematic phases. The experimental results are interpreted considering the screening effect of the hydrophilic parts of the dopants on the repulsion between the polar heads of the main amphiphilic molecules at micelle surfaces. This process favours the increase of the more flat micellar surfaces of micelles, which triggers the orientational fluctuations responsible for the biaxial and discotic nematic phases. 相似文献