首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
本文提出了一类新的构造0-1多项式规划的半定规划(SDP)松弛方法. 我们首先利用矩阵分解和分片线性逼近给出一种新的SDP松弛, 该 松弛产生的界比标准线性松弛产生的界更紧. 我们还利用 拉格朗日松弛和平方和(SOS)松弛方法给出了一种构造Lasserre的SDP 松弛的新方法.  相似文献   

2.
A standard quadratic problem consists of finding global maximizers of a quadratic form over the standard simplex. In this paper, the usual semidefinite programming relaxation is strengthened by replacing the cone of positive semidefinite matrices by the cone of completely positive matrices (the positive semidefinite matrices which allow a factorization FF T where F is some non-negative matrix). The dual of this cone is the cone of copositive matrices (i.e., those matrices which yield a non-negative quadratic form on the positive orthant). This conic formulation allows us to employ primal-dual affine-scaling directions. Furthermore, these approaches are combined with an evolutionary dynamics algorithm which generates primal-feasible paths along which the objective is monotonically improved until a local solution is reached. In particular, the primal-dual affine scaling directions are used to escape from local maxima encountered during the evolutionary dynamics phase.  相似文献   

3.
在这篇论文里,有机地把外逼近方法与分枝定界技术结合起来,提出了解带有二次约束非凸二次规划问题的一个分枝缩减方法;给出了原问题的一个新的线性规划松弛,以便确定它在超矩形上全局最优值的一个下界;利用超矩形的一个深度二级剖分方法,以及超矩形的缩减和删除技术,提高算法的收敛速度;证明了在知道原问题可行点的条件下,该算法在有限步里就可以获得原问题的一个全局最优化解,并且用一个例子说明了该算法是有效的.  相似文献   

4.
本文提出一类基于DC分解的非凸二次规划问题SDP松弛方法,并通过求解一个二阶锥问题得到原问题的近似最优解.我们首先对非凸二次目标函数进行DC分解,然后利用线性下逼近得到一个凸二次松弛问题,而最优的DC分解可通过求解一个SDP问题得到.数值试验表明,基于DC分解的SDP近似解平均优于经典SDP松弛和随机化方法产生的近似解。  相似文献   

5.
The problem of minimizing a (non-convex) quadratic function over the simplex (the standard quadratic optimization problem) has an exact convex reformulation as a copositive programming problem. In this paper we show how to approximate the optimal solution by approximating the cone of copositive matrices via systems of linear inequalities, and, more refined, linear matrix inequalities (LMI's). In particular, we show that our approach leads to a polynomial-time approximation scheme for the standard quadratic optimzation problem. This is an improvement on the previous complexity result by Nesterov who showed that a 2/3-approximation is always possible. Numerical examples from various applications are provided to illustrate our approach.  相似文献   

6.
凸二次规划问题逆问题的模型与解法   总被引:1,自引:0,他引:1  
本文分别考虑带非负约束和不带大量负约束凸二次规划问题逆问题。首先得到各个逆问题的数学模型,然后对不同的模型给出不同的求解方法。  相似文献   

7.
This paper presents a perfect duality theory and a complete set of solutions to nonconvex quadratic programming problems subjected to inequality constraints. By use of the canonical dual transformation developed recently, a canonical dual problem is formulated, which is perfectly dual to the primal problem in the sense that they have the same set of KKT points. It is proved that the KKT points depend on the index of the Hessian matrix of the total cost function. The global and local extrema of the nonconvex quadratic function can be identified by the triality theory [11]. Results show that if the global extrema of the nonconvex quadratic function are located on the boundary of the primal feasible space, the dual solutions should be interior points of the dual feasible set, which can be solved by deterministic methods. Certain nonconvex quadratic programming problems in {\open {R}}^{n} can be converted into a dual problem with only one variable. It turns out that a complete set of solutions for quadratic programming over a sphere is obtained as a by-product. Several examples are illustrated.  相似文献   

8.
对带非凸二次约束的二次比式和问题(P)给出分枝定界算法,首先将问题(P)转化为其等价问题(Q),然后利用线性化技术,建立了(Q)松弛线性规划问题(RLP),通过对(RLP)可行域的细分及求解一系列线性规划问题,不断更新(Q)的上下界,从理论上证明了算法的收敛性,数值实验表明了算法的可行性和有效性.  相似文献   

9.
In this paper we propose a new branch and bound algorithm using a rectangular partition and ellipsoidal technique for minimizing a nonconvex quadratic function with box constraints. The bounding procedures are investigated by d.c. (difference of convex functions) optimization algorithms, called DCA. This is based upon the fact that the application of the DCA to the problems of minimizing a quadratic form over an ellipsoid and/or over a box is efficient. Some details of computational aspects of the algorithm are reported. Finally, numerical experiments on a lot of test problems showing the efficiency of our algorithm are presented.  相似文献   

10.
标准的二次优化问题是NP-hard问题,把该问题转化为半不定的线性规划问题,且提出了一个线性规划的割平面算法来求解这个半不定的线性规划问题,并给出了该算法的收敛性证明.  相似文献   

11.
General successive convex relaxation methods (SRCMs) can be used to compute the convex hull of any compact set, in an Euclidean space, described by a system of quadratic inequalities and a compact convex set. Linear complementarity problems (LCPs) make an interesting and rich class of structured nonconvex optimization problems. In this paper, we study a few of the specialized lift-and-project methods and some of the possible ways of applying the general SCRMs to LCPs and related problems.  相似文献   

12.
In this paper we analyze difference-of-convex (d.c.) decompositions for indefinite quadratic functions. Given a quadratic function, there are many possible ways to decompose it as a difference of two convex quadratic functions. Some decompositions are dominated, in the sense that other decompositions exist with a lower curvature. Obviously, undominated decompositions are of particular interest. We provide three different characterizations of such decompositions, and show that there is an infinity of undominated decompositions for indefinite quadratic functions. Moreover, two different procedures will be suggested to find an undominated decomposition starting from a generic one. Finally, we address applications where undominated d.c.d.s may be helpful: in particular, we show how to improve bounds in branch-and-bound procedures for quadratic optimization problems.  相似文献   

13.
本文提出了一个求不定二次规划问题全局最优解的新算法.首先,给出了三种计算下界的方法:线性逼近法、凸松弛法和拉格朗日松弛法;并且证明了拉格朗日对偶界与通过凸松弛得到的下界是相等的;然后建立了基于拉格朗日对偶界和矩形两分法的分枝定界算法,并给出了初步的数值试验结果.  相似文献   

14.
15.
We develop algorithms to construct inner approximations of the cone of positive semidefinite matrices via linear programming and second order cone programming. Starting with an initial linear algebraic approximation suggested recently by Ahmadi and Majumdar, we describe an iterative process through which our approximation is improved at every step. This is done using ideas from column generation in large-scale linear programming. We then apply these techniques to approximate the sum of squares cone in a nonconvex polynomial optimization setting, and the copositive cone for a discrete optimization problem.  相似文献   

16.
The concept of ɛ-approximate optimal solution as widely used in nonconvex global optimization is not quite adequate, because such a point may correspond to an objective function value far from the true optimal value, while being infeasible. We introduce a concept of essential ɛ-optimal solution, which gives a more appropriate approximate optimal solution, while being stable under small perturbations of the constraints. A general method for finding an essential ɛ-optimal solution in finitely many steps is proposed which can be applied to d.c. programming and monotonic optimization.  相似文献   

17.
In this paper, a number of theoretical and algorithmic issues concerning the solution of parametric nonconvex programs are presented. In particular, the need for defining a suitable overestimating subproblem is discussed in detail. The multiparametric case is also addressed, and a branch and bound (B&B) algorithm for the solution of parametric nonconvex programs is proposed.  相似文献   

18.
This paper is based on a recent work by Kojima which extended sums of squares relaxations of polynomial optimization problems to polynomial semidefinite programs. Let and be a finite dimensional real vector space and a symmetric cone embedded in ; examples of and include a pair of the N-dimensional Euclidean space and its nonnegative orthant, a pair of the N-dimensional Euclidean space and N-dimensional second-order cones, and a pair of the space of m × m real symmetric (or complex Hermitian) matrices and the cone of their positive semidefinite matrices. Sums of squares relaxations are further extended to a polynomial optimization problem over , i.e., a minimization of a real valued polynomial a(x) in the n-dimensional real variable vector x over a compact feasible region , where b(x) denotes an - valued polynomial in x. It is shown under a certain moderate assumption on the -valued polynomial b(x) that optimal values of a sequence of sums of squares relaxations of the problem, which are converted into a sequence of semidefinite programs when they are numerically solved, converge to the optimal value of the problem. Research supported by Grant-in-Aid for Scientific Research on Priority Areas 16016234.  相似文献   

19.
A problem arising in the control of flutter in compression systems via mistuning is formulated as maximizing a quadratic function with a circulant matrix over a set of vectors whose every component can take one of three values (the three level problem) or one of two values (the two level problem).  相似文献   

20.
The problem of the unequal sphere packing in a 3-dimen-sional polytope is analyzed. Given a set of unequal spheres and a poly-tope, the double goal is to assemble the spheres in such a way that (i) they do not overlap with each other and (ii) the sum of the volumes of the spheres packed in the polytope is maximized. This optimization has an application in automated radiosurgical treatment planning and can be formulated as a nonconvex optimization problem with quadratic constraints and a linear objective function. On the basis of the special structures associated with this problem, we propose a variety of algorithms which improve markedly the existing simplicial branch-and-bound algorithm for the general nonconvex quadratic program. Further, heuristic algorithms are incorporated to strengthen the efficiency of the algorithm. The computational study demonstrates that the proposed algorithm can obtain successfully the optimization up to a limiting size.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号