首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
We establish the global well-posedness of the Navier–Stokes- ${\bar \omega}$ model with initial data ${u_0 \in H^{1-s}(\mathbb{R}^3)}$ with ${0 < s < \frac{1}{2}}$ which improves the existence results in Fan and Zhou (Appl Math Lett 24:1915–1918, 2011), Layton et al. (Commun Pure Appl Anal 10:1763–1777, 2011) where the initial data are required belonging to ${H^2(\mathbb{R}^3)}$ . We also obtain the similar results for a family of Navier–Stokes-α-like and magnetohydrodynamic-α models.  相似文献   

2.
We study a class of quadratic p-ary functions ${{\mathcal{F}}_{p,n}}$ from ${\mathbb{F}_{p^n}}$ to ${\mathbb{F}_p, p \geq 2}$ , which are well-known to have plateaued Walsh spectrum; i.e., for each ${b \in \mathbb{F}_{p^n}}$ the Walsh transform ${\hat{f}(b)}$ satisfies ${|\hat{f}(b)|^2 \in \{ 0, p^{(n+s)}\}}$ for some integer 0 ≤ s ≤ n ? 1. For various types of integers n, we determine possible values of s, construct ${{\mathcal{F}}_{p,n}}$ with prescribed spectrum, and present enumeration results. Our work generalizes some of the earlier results, in characteristic two, of Khoo et. al. (Des Codes Cryptogr, 38, 279–295, 2006) and Charpin et al. (IEEE Trans Inf Theory 51, 4286–4298, 2005) on semi-bent functions, and of Fitzgerald (Finite Fields Appl 15, 69–81, 2009) on quadratic forms.  相似文献   

3.
We study cohomological induction for a pair $ {\left( {\mathfrak{g},\mathfrak{k}} \right)} $ , $ \mathfrak{g} $ being an infinitedimensional locally reductive Lie algebra and $ \mathfrak{k} \subset \mathfrak{g} $ being of the form $ \mathfrak{k}_{0} \subset C_{\mathfrak{g}} {\left( {\mathfrak{k}_{0} } \right)} $ , where $ \mathfrak{k}_{0} \subset \mathfrak{g} $ is a finite-dimensional reductive in $ \mathfrak{g} $ subalgebra and $ C_{\mathfrak{g}} {\left( {\mathfrak{k}_{0} } \right)} $ is the centralizer of $ \mathfrak{k}_{0} $ in $ \mathfrak{g} $ . We prove a general nonvanishing and $ \mathfrak{k} $ -finiteness theorem for the output. This yields, in particular, simple $ {\left( {\mathfrak{g},\mathfrak{k}} \right)} $ -modules of finite type over k which are analogs of the fundamental series of generalized Harish-Chandra modules constructed in [PZ1] and [PZ2]. We study explicit versions of the construction when $ \mathfrak{g} $ is a root-reductive or diagonal locally simple Lie algebra.  相似文献   

4.
Conservative subtheories of ${{R}^{1}_{2}}$ and ${{S}^{1}_{2}}$ are presented. For ${{S}^{1}_{2}}$ , a slight tightening of Je?ábek??s result (Math Logic Q 52(6):613?C624, 2006) that ${T^{0}_{2} \preceq_{\forall \Sigma^{b}_{1}}S^{1}_{2}}$ is presented: It is shown that ${T^{0}_{2}}$ can be axiomatised as BASIC together with induction on sharply bounded formulas of one alternation. Within this ${\forall\Sigma^{b}_{1}}$ -theory, we define a ${\forall\Sigma^{b}_{0}}$ -theory, ${T^{-1}_{2}}$ , for the ${\forall\Sigma^{b}_{0}}$ -consequences of ${S^{1}_{2}}$ . We show ${T^{-1}_{2}}$ is weak by showing it cannot ${\Sigma^{b}_{0}}$ -define division by 3. We then consider what would be the analogous ${\forall\hat\Sigma^{b}_{1}}$ -conservative subtheory of ${R^{1}_{2}}$ based on Pollett (Ann Pure Appl Logic 100:189?C245, 1999. It is shown that this theory, ${{T}^{0,\left\{2^{(||\dot{id}||)}\right\}}_{2}}$ , also cannot ${\Sigma^{b}_{0}}$ -define division by 3. On the other hand, we show that ${{S}^{0}_{2}+open_{\{||id||\}}}$ -COMP is a ${\forall\hat\Sigma^{b}_{1}}$ -conservative subtheory of ${R^{1}_{2}}$ . Finally, we give a refinement of Johannsen and Pollett (Logic Colloquium?? 98, 262?C279, 2000) and show that ${\hat{C}^{0}_{2}}$ is ${\forall\hat\Sigma^{b}_{1}}$ -conservative over a theory based on open cl-comprehension.  相似文献   

5.
In his thesis, Weisinger (Thesis, 1977) developed a newform theory for elliptic modular Eisenstein series. This newform theory for Eisenstein series was later extended to the Hilbert modular setting by Wiles (Ann. Math. 123(3):407–456, 1986). In this paper, we extend the theory of newforms for Hilbert modular Eisenstein series. In particular, we provide a strong multiplicity-one theorem in which we prove that Hilbert Eisenstein newforms are uniquely determined by their Hecke eigenvalues for any set of primes having Dirichlet density greater than $\frac{1}{2}$ . Additionally, we provide a number of applications of this newform theory. Let denote the space of Hilbert modular Eisenstein series of parallel weight k≥3, level $\mathcal{N}$ and Hecke character Ψ over a totally real field K. For any prime $\mathfrak{q}$ dividing $\mathcal{N}$ , we define an operator $C_{\mathfrak{q}}$ generalizing the Hecke operator $T_{\mathfrak{q}}$ and prove a multiplicity-one theorem for with respect to the algebra generated by the Hecke operators $T_{\mathfrak{p}}$ ( $\mathfrak{p}\nmid\mathcal{N}$ ) and the operators $C_{\mathfrak{q}}$ ( $\mathfrak{q}\mid\mathcal{N}$ ). We conclude by examining the behavior of Hilbert Eisenstein newforms under twists by Hecke characters, proving a number of results having a flavor similar to those of Atkin and Li (Invent. Math. 48(3):221–243, 1978).  相似文献   

6.
Let $ \mathcal{A} $ be a nonempty family of functions from $ \mathbb{R} $ to $ \mathbb{R} $ . A function $ f:\mathbb{R}\to \mathbb{R} $ is said to be strongly countably $ \mathcal{A} $ -function if there is a sequence (f n ) of functions from $ \mathcal{A} $ such that $ \mathrm{Gr}(f)\subset {\cup_n}\mathrm{Gr}\left( {{f_n}} \right) $ (Gr(f) denotes the graph of f). If $ \mathcal{A} $ is the family of all continuous functions, the strongly countable $ \mathcal{A} $ -functions are called strongly countably continuous and were investigated in [Z. Grande and A. Fatz-Grupka, On countably continuous functions, Tatra Mt. Math. Publ., 28:57–63, 2004], [G. Horbaczewska, On strongly countably continuous functions, Tatra Mt. Math. Publ., 42:81–86, 2009], and [T.A. Natkaniec, On additive countably continuous functions, Publ. Math., 79(1–2):1–6, 2011]. In this article, we prove that the families $ \mathcal{A}\left( \mathbb{R} \right) $ of all strongly countably $ \mathcal{A} $ -functions are closed with respect to some operations in dependence of analogous properties of the families $ \mathcal{A} $ , and, in particular, we show some properties of strongly countably differentiable functions, strongly countably approximately continuous functions, and strongly countably quasi-continuous functions.  相似文献   

7.
We give formulas relating the Fourier transform of a radial function in $\mathbb{R}^{n}$ and the Fourier transform of the same function in $\mathbb{R}^{n+1}$ , completing the analysis of Grafakos and Teschl (J. Fourier Anal. Appl. 19:167–179, 2013) where the case of $\mathbb{R}^{n}$ and $\mathbb{R}^{n+2}$ was considered.  相似文献   

8.
Let $\mathfrak{g}$ be a complex semisimple Lie algebra, $\mathfrak{b}$ a Borel subalgebra, and $\mathfrak{h}\subset\mathfrak{b}$ a Cartan subalgebra. Let V be a finite dimensional simple $U(\mathfrak{g})$ module. Based on a principal s-triple (e,h,f) and following work of Kostant, Brylinski (J Amer Math Soc 2(3):517–533, 1989) defined a filtration $\mathcal{F}_e$ for all weight subspaces V μ of V and calculated the dimensions of the graded subspaces for μ dominant. In Joseph et al. (J Amer Math Soc 13(4):945–970, 2000) these dimensions were calculated for all μ. Let δM(0) be the finite dual of the Verma module of highest weight 0. It identifies with the global functions on a Weyl group translate of the open Bruhat cell and so inherits a natural degree filtration. On the other hand, up to an appropriate shift of weights, there is a unique $U(\mathfrak{b})$ module embedding of V into δM(0) and so the degree filtration induces a further filtration $\mathcal{F}$ on each weight subspace V μ . A casual reading of Joseph et al. (J Amer Math Soc 13(4):945–970, 2000) might lead one to believe that $\mathcal{F}$ and $\mathcal{F}_e$ coincide. However this is quite false. Rather one should view $\mathcal{F}_e$ as coming from a left action of $U(\mathfrak{n})$ and then there is a second (Brylinski-Kostant) filtration $\mathcal{F}'_e$ coming from a right action. It is $\mathcal{F}'_e$ which may coincide with $\mathcal{F}$ . In this paper the above claim is made precise. First it is noted that $\mathcal{F}$ is itself not canonical, but depends on a choice of variables. Then it is shown that a particular choice can be made to ensure that $\mathcal{F}=\mathcal{F}'_e$ . An explicit form for the unique left $U(\mathfrak{b})$ module embedding $V\hookrightarrow\delta M(0)$ is given using the right action of $U(\mathfrak{n})$ . This is used to give a purely algebraic proof of Brylinski’s main result in Brylinski (J Amer Math Soc 2(3):517–533, 1989) which is much simpler than Joseph et al. (J Amer Math Soc 13(4):945–970, 2000). It is noted that the dimensions of the graded subspaces of $\rm{gr}_{\mathcal{F}_e} V_{\!\mu}$ and $\rm{gr}_{\mathcal{F}'_e} V_{\!\mu}$ can be very different. Their interrelation may involve the Kashiwara involution. Indeed a combinatorial formula for multiplicities in tensor products involving crystal bases and the Kashiwara involution is recovered. Though the dimensions for the graded subspaces of $\rm{gr}_{\mathcal{F}'_e} V_{\!\mu}$ are determined by polynomial degree, their values remain unknown.  相似文献   

9.
Consider the stationary Navier–Stokes equations in an exterior domain $\varOmega \subset \mathbb{R }^3 $ with smooth boundary. For every prescribed constant vector $u_{\infty } \ne 0$ and every external force $f \in \dot{H}_2^{-1} (\varOmega )$ , Leray (J. Math. Pures. Appl., 9:1–82, 1933) constructed a weak solution $u $ with $\nabla u \in L_2 (\varOmega )$ and $u - u_{\infty } \in L_6(\varOmega )$ . Here $\dot{H}^{-1}_2 (\varOmega )$ denotes the dual space of the homogeneous Sobolev space $\dot{H}^1_{2}(\varOmega ) $ . We prove that the weak solution $u$ fulfills the additional regularity property $u- u_{\infty } \in L_4(\varOmega )$ and $u_\infty \cdot \nabla u \in \dot{H}_2^{-1} (\varOmega )$ without any restriction on $f$ except for $f \in \dot{H}_2^{-1} (\varOmega )$ . As a consequence, it turns out that every weak solution necessarily satisfies the generalized energy equality. Moreover, we obtain a sharp a priori estimate and uniqueness result for weak solutions assuming only that $\Vert f\Vert _{\dot{H}^{-1}_2(\varOmega )}$ and $|u_{\infty }|$ are suitably small. Our results give final affirmative answers to open questions left by Leray (J. Math. Pures. Appl., 9:1–82, 1933) about energy equality and uniqueness of weak solutions. Finally we investigate the convergence of weak solutions as $u_{\infty } \rightarrow 0$ in the strong norm topology, while the limiting weak solution exhibits a completely different behavior from that in the case $u_{\infty } \ne 0$ .  相似文献   

10.
Let $G$ be a connected semisimple algebraic group with Lie algebra $\mathfrak{g }$ and $P$ a parabolic subgroup of $G$ with $\mathrm{Lie\, }P=\mathfrak{p }$ . The parabolic contraction $\mathfrak{q }$ of $\mathfrak{g }$ is the semi-direct product of $\mathfrak{p }$ and a $\mathfrak{p }$ -module $\mathfrak{g }/\mathfrak{p }$ regarded as an abelian ideal. We are interested in the polynomial invariants of the adjoint and coadjoint representations of $\mathfrak{q }$ . In the adjoint case, the algebra of invariants is easily described and it turns out to be a graded polynomial algebra. The coadjoint case is more complicated. Here we found a connection between symmetric invariants of $\mathfrak{q }$ and symmetric invariants of centralisers $\mathfrak{g }_e\subset \mathfrak{g }$ , where $e\in \mathfrak{g }$ is a Richardson element with polarisation $\mathfrak{p }$ . Using this connection and results of Panyushev et al. (J Algebra 313:343–391, 2007), we prove that the algebra of symmetric invariants of $\mathfrak{q }$ is free for all parabolic subalgebras in types $\mathbf A$ and $\mathbf C$ and some parabolics in type $\mathbf B$ . This technique also applies to the minimal parabolic subalgebras in all types. For $\mathfrak{p }=\mathfrak{b }$ , a Borel subalgebra of $\mathfrak{g }$ , one gets a contraction of $\mathfrak{g }$ recently introduced by Feigin (Selecta Math 18:513–537, 2012) and studied from invariant-theoretic point of view in our previous paper (Panyushev and Yakimova in Ann Inst Fourier 62(6):2053–2068, 2012).  相似文献   

11.
A broadcast on a nontrivial connected graph G is a function ${f:V \longrightarrow \{0, \ldots,\operatorname{diam}(G)\}}$ such that for every vertex ${v \in V(G)}$ , ${f(v) \leq e(v)}$ , where ${\operatorname{diam}(G)}$ denotes the diameter of G and e(v) denotes the eccentricity of vertex v. The broadcast independence number is the maximum value of ${\sum_{v \in V} f(v)}$ over all broadcasts f that satisfy ${d(u,v) > \max \{f(u), f(v)\}}$ for every pair of distinct vertices u, v with positive values. We determine this invariant for grid graphs ${G_{m,n} = P_m \square P_n}$ , where ${2 \leq m \leq n}$ and □ denotes the Cartesian product. We hereby answer one of the open problems raised by Dunbar et al. in (Discrete Appl Math 154:59–75, 2006).  相似文献   

12.
In this paper we continue the project of generalizing tilting theory to the category of contravariant functors $\mathrm{Mod}(\mathcal{C})$ , from a skeletally small preadditive category $\mathcal{C}$ to the category of abelian groups, initiated in [15]. We introduce the notion of a generalized tilting category $\mathcal{T}$ , and we concentrate here on extending Happel’s theorem to $\mathrm{Mod}(\mathcal{C})$ ; more specifically, we prove that there is an equivalence of triangulated categories $\mathcal{D}^{b}( \mathrm{Mod}(\mathcal{C}))\cong \mathcal{D}^{b}(\mathrm{Mod}(\mathcal{T}))$ . We then add some restrictions on our category $\mathcal{C}$ , in order to obtain a version of Happel’s theorem for the categories of finitely presented functors. We end the paper proving that some of the theorems for artin algebras, relating tilting with contravariantly finite categories proved in Auslander and Reiten (Adv Math 12(3):306–366, 1974; Adv Math 86(1):111–151, 1991), can be extended to the category of finitely presented functors $\mathrm{mod}(\mathcal{C})$ , with $\mathcal{C}$ a dualizing variety.  相似文献   

13.
Second-order elliptic operators with unbounded coefficients of the form ${Au := -{\rm div}(a\nabla u) + F . \nabla u + Vu}$ in ${L^{p}(\mathbb{R}^{N}) (N \in \mathbb{N}, 1 < p < \infty)}$ are considered, which are the same as in recent papers Metafune et?al. (Z Anal Anwendungen 24:497–521, 2005), Arendt et?al. (J Operator Theory 55:185–211, 2006; J Math Anal Appl 338: 505–517, 2008) and Metafune et?al. (Forum Math 22:583–601, 2010). A new criterion for the m-accretivity and m-sectoriality of A in ${L^{p}(\mathbb{R}^{N})}$ is presented via a certain identity that behaves like a sesquilinear form over L p ×?L p'. It partially improves the results in (Metafune et?al. in Z Anal Anwendungen 24:497–521, 2005) and (Metafune et?al. in Forum Math 22:583–601, 2010) with a different approach. The result naturally extends Kato’s criterion in (Kato in Math Stud 55:253–266, 1981) for the nonnegative selfadjointness to the case of p ≠?2. The simplicity is illustrated with the typical example ${Au = -u\hspace{1pt}'' + x^{3}u\hspace{1pt}' + c |x|^{\gamma}u}$ in ${L^p(\mathbb{R})}$ which is dealt with in (Arendt et?al. in J Operator Theory 55:185–211, 2006; Arendt et?al. in J Math Anal Appl 338: 505–517, 2008).  相似文献   

14.
Let ${\mathcal{F}}$ be a family of connected graphs. A graph G is said to be ${\mathcal{F}}$ -free if G is H-free for every graph H in ${\mathcal{F}}$ . We study the problem of characterizing the families of graphs ${\mathcal{F}}$ such that every large enough connected ${\mathcal{F}}$ -free graph of even order has a perfect matching. This problems was previously studied in Plummer and Saito (J Graph Theory 50(1):1–12, 2005), Fujita et al. (J Combin Theory Ser B 96(3):315–324, 2006) and Ota et al. (J Graph Theory, 67(3):250–259, 2011), where the authors were able to characterize such graph families ${\mathcal{F}}$ restricted to the cases ${|\mathcal{F}|\leq 1, |\mathcal{F}| \leq 2}$ and ${|\mathcal{F}| \leq 3}$ , respectively. In this paper, we complete the characterization of all the families that satisfy the above mentioned property. Additionally, we show the families that one gets when adding the condition ${|\mathcal{F}| \leq k}$ for some k ≥ 4.  相似文献   

15.
We sharpen a procedure of Cao and Zhai (J Théorie Nombres Bordeaux,11: 407–423, 1999) to estimate the sum $$\begin{aligned} \sum _{m\sim M} \sum _{n\sim N} a_m b_n \, e\left(\frac{F m^\alpha n^\beta }{M^\alpha N^\beta }\right) \end{aligned}$$ with $|a_m|,\ |b_n| \le 1$ . We apply this to give bounds for the discrepancy (mod 1) of the sequence $\{p^c: p\le X\}$ where $p$ is a prime variable, in the range $\frac{130}{79}\le c \le \frac{11}{5}$ . An alternative strategy is used for the range $1.48 \le c \le \frac{130}{79}$ . We use further exponential sum estimates to show that for large $R>0$ , and a small constant $\eta >0$ , the inequality $$\begin{aligned} \left| p_1^c+p_2^c+p_3^c+p_4^c+p_5^c - R\right| < R^{-\eta } \end{aligned}$$ holds for many prime tuples, provided $2<c\le 2.041$ . This improves work of Cao and Zhai (Monatsh Math, 150:173–179, 2007) and a theorem claimed by Shi and Liu (Monatsh Math, published online, 2012).  相似文献   

16.
17.
Let $X$ be a manifold. The classification of all equivariant bilinear maps between tensor density modules over $X$ has been investigated by Grozman (Funct Anal Appl 14(2):58–59, 1980), who has provided a full classification for those which are differential operators. Here we investigate the same question without the hypothesis that the maps are differential operators. In our paper, the geometric context is algebraic geometry and the manifold $X$ is the circle $\text{ Spec}\, \mathbb{C }[z,z^{-1}]$ . Our main motivation comes from the fact that such a classification is required to complete the proof of the main result of Iohara and Mathieu (Proc Lond Math Soc, 2012, in press). Indeed it requires to also include the case of deformations of tensor density modules.  相似文献   

18.
Let $G$ be a semi-simple simply connected group over $\mathbb {C}$ . Following Gerasimov et al. (Comm Math Phys 294:97–119, 2010) we use the $q$ -Toda integrable system obtained by quantum group version of the Kostant–Whittaker reduction (cf. Etingof in Am Math Soc Trans Ser 2:9–25, 1999, Sevostyanov in Commun Math Phys 204:1–16, 1999) to define the notion of $q$ -Whittaker functions $\varPsi _{\check{\lambda }}(q,z)$ . This is a family of invariant polynomials on the maximal torus $T\subset G$ (here $z\in T$ ) depending on a dominant weight $\check{\lambda }$ of $G$ whose coefficients are rational functions in a variable $q\in \mathbb {C}^*$ . For a conjecturally the same (but a priori different) definition of the $q$ -Toda system these functions were studied by Ion (Duke Math J 116:1–16, 2003) and by Cherednik (Int Math Res Notices 20:3793–3842, 2009) [we shall denote the $q$ -Whittaker functions from Cherednik (Int Math Res Notices 20:3793–3842, 2009) by $\varPsi '_{\check{\lambda }}(q,z)$ ]. For $G=SL(N)$ these functions were extensively studied in Gerasimov et al. (Comm Math Phys 294:97–119, 2010; Comm Math Phys 294:121–143, 2010; Lett Math Phys 97:1–24, 2011). We show that when $G$ is simply laced, the function $\hat{\varPsi }_{\check{\lambda }}(q,z)=\varPsi _{\check{\lambda }}(q,z)\cdot {\prod \nolimits _{i\in I}\prod \nolimits _{r=1}^{\langle \alpha _i,\check{\uplambda }\rangle }(1-q^r)}$ (here $I$ denotes the set of vertices of the Dynkin diagram of $G$ ) is equal to the character of a certain finite-dimensional $G[[{\mathsf {t}}]]\rtimes \mathbb {C}^*$ -module $D(\check{\lambda })$ (the Demazure module). When $G$ is not simply laced a twisted version of the above statement holds. This result is known for $\varPsi _{\check{\lambda }}$ replaced by $\varPsi '_{\check{\lambda }}$ (cf. Sanderson in J Algebraic Combin 11:269–275, 2000 and Ion in Duke Math J 116:1–16, 2003); however our proofs are algebro-geometric [and rely on our previous work (Braverman, Finkelberg in Semi-infinite Schubert varieties and quantum $K$ -theory of flag manifolds, arXiv/1111.2266, 2011)] and thus they are completely different from Sanderson (J Algebraic Combin 11:269–275, 2000) and Ion (Duke Math J 116:1–16, 2003) [in particular, we give an apparently new algebro-geometric interpretation of the modules $D(\check{\lambda })]$ .  相似文献   

19.
The Gram dimension $\mathrm{gd}(G)$ of a graph $G$ is the smallest integer $k\ge 1$ such that any partial real symmetric matrix, whose entries are specified on the diagonal and at the off-diagonal positions corresponding to edges of $G$ , can be completed to a positive semidefinite matrix of rank at most $k$ (assuming a positive semidefinite completion exists). For any fixed $k$ the class of graphs satisfying $\mathrm{gd}(G) \le k$ is minor closed, hence it can be characterized by a finite list of forbidden minors. We show that the only minimal forbidden minor is $K_{k+1}$ for $k\le 3$ and that there are two minimal forbidden minors: $K_5$ and $K_{2,2,2}$ for $k=4$ . We also show some close connections to Euclidean realizations of graphs and to the graph parameter $\nu ^=(G)$ of van der Holst (Combinatorica 23(4):633–651, 2003). In particular, our characterization of the graphs with $\mathrm{gd}(G)\le 4$ implies the forbidden minor characterization of the 3-realizable graphs of Belk (Discret Comput Geom 37:139–162, 2007) and Belk and Connelly (Discret Comput Geom 37:125–137, 2007) and of the graphs with $\nu ^=(G) \le 4$ of van der Holst (Combinatorica 23(4):633–651, 2003).  相似文献   

20.
We obtain a formula for the $n$ -dimensional distributions of the $\text{ Airy}_1$ process in terms of a Fredholm determinant on $L^2(\mathbb{R })$ , as opposed to the standard formula which involves extended kernels, on $L^2(\{1,\dots ,n\}\times \mathbb{R })$ . The formula is analogous to an earlier formula of Prähofer and Spohn (J Stat Phys 108(5–6):1071–1106, 2002) for the $\text{ Airy}_2$ process. Using this formula we are able to prove that the $\text{ Airy}_1$ process is Hölder continuous with exponent $\frac{1}{2}$ —and that it fluctuates locally like a Brownian motion. We also explain how the same methods can be used to obtain the analogous results for the $\text{ Airy}_2$ process. As a consequence of these two results, we derive a formula for the continuum statistics of the $\text{ Airy}_1$ process, analogous to that obtained in Corwin et al. (Commun Math Phys 2011, to appear) for the $\text{ Airy}_2$ process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号