首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present a theory for uniaxial nematic elastomers with variable asphericity. As an application of the theory, we consider the time-independent, isochoric radial expansion of a right circular cylinder. Numerical solutions to the resulting differential equation are obtained for a range of radial expansions. For all expansions considered, there exists an isotropic core of material surrounding the cylinder axis where the asphericity vanishes and in which the polymeric chains are shaped as spherical coils. This region, corresponding to a disclination of strength +1 along the axis, is bounded by a narrow transition layer across which the asphericity increases rapidly and attains a non-trivial positive value. The material thereby becomes anisotropic away from the disclination so that the polymeric chains are shaped as ellipsoidal coils of revolution prolate about the cylinder radius. In accordance with the area of steeply changing asphericity between isotropic and anisotropic regimes, a marked drop in the free-energy density is observed. The boundary of the disclination core is associated with the location of this energy drop. For realistic choices of material parameters, this criterion yields a core on the order of 10−2 μm, which coincides with observations in conventional liquid-crystal melts. Also occurring at the core boundary, and further confirming its location, are sharp transitions in the behavior of the constitutively determined contributions to the deformational stress and a change in the pressure. Furthermore, the constitutively determined contribution to the orientational stress is completely concentrated at the core boundary. The total energy shows a definitive preference for disclinated states.  相似文献   

2.
The problems of singularity formation and hydrostatic stress created by an inhomogeneity with eigenstrain in an incompressible isotropic hyperelastic material are considered. For both a spherical ball and a cylindrical bar with a radially symmetric distribution of finite possibly anisotropic eigenstrains, we show that the anisotropy of these eigenstrains at the center (the center of the sphere or the axis of the cylinder) controls the stress singularity. If they are equal at the center no stress singularity develops but if they are not equal then stress always develops a logarithmic singularity. In both cases, the energy density and strains are everywhere finite. As a related problem, we consider annular inclusions for which the eigenstrains vanish in a core around the center. We show that even for an anisotropic distribution of eigenstrains, the stress inside the core is always hydrostatic. We show how these general results are connected to recent claims on similar problems in the limit of small eigenstrains.  相似文献   

3.
We develop a sharp-interface theory for phase transformations between the isotropic and uniaxial nematic phases of a flowing liquid crystal. Aside from conventional evolution equations for the bulk phases and corresponding interface conditions, the theory includes a supplemental interface condition expressing the balance of configurational momentum. As an idealized illustrative application of the theory, we consider the problem of an evolving spherical droplet of the isotropic phase surrounded by the nematic phase in a radially-oriented state. For this problem, the bulk and interfacial equations collapse to a single nonlinear second-order ordinary differential equation for the radius of the droplet—an equation which, in essence, expresses the balance of configurational momentum on the interface. This droplet evolution equation, which closely resembles a previously derived and extensively studied equation for the expansion of contraction of a spherical gas bubble in an incompressible viscous liquid, includes terms accounting for the curvature elasticity and viscosity of the nematic phase, interfacial energy, interfacial viscosity, and the ordering kinetics of the phase transformation. We determine the equilibria of this equation and study their stability. Additionally, we find that motion of the interface generates a backflow, without director reorientation, in the nematic phase. Our analysis indicates that a backflow measurement has the potential to provide an independent means to determine the density difference between the isotropic and uniaxial nematic phases.  相似文献   

4.
This paper deals with an analytical model of thermal stresses which originate during a cooling process of an anisotropic solid continuum with uniaxial or triaxial anisotropy. The anisotropic solid continuum consists of anisotropic spherical particles periodically distributed in an anisotropic infinite matrix. The particles are or are not embedded in an anisotropic spherical envelope, and the infinite matrix is imaginarily divided into identical cubic cells with central particles. The thermal stresses are thus investigated within the cubic cell. This mulfi-particle-(envelope)-matrix system based on the cell model is applicable to two- and three-component materials of precipitate-matrix and precipitate-envelope-matrix types, respectively. Finally, an analysis of the determination of the thermal stresses in the multi-par- ticle-(envelope)-matrix system which consists of isotropic as well as uniaxial- and/or triaxial-anisotropic components is presented. Additionally, the thermal-stress induced elastic energy density for the anisotropic components is also derived. These analytical models which are valid for isotropic, anisotropic and isotropic-anisotropic multi-particle- (envelope)-matrix systems represent the determination of important material characteristics. This analytical determination includes: (1) the determination of a critical particle radius which defines a limit state regarding the crack initiation in an elastic, elastic-plastic and plastic components; (2) the determination of dimensions and a shape of a crack propagated in a ceramic components; (3) the determination of an energy barrier and micro-/macro-strengthening in a component; and (4) analytical-(experimental)-computational methods of the lifetime prediction. The determination of the thermal stresses in the anisotropic components presented in this paper can be used to determine these material characteristics of real two- and three-component materials with anisotropic components or with anisotropic and isotropic components.  相似文献   

5.
We investigate the structure of nematic liquid crystal thin films described by the Landau–de Gennes tensor-valued order parameter model with Dirichlet boundary conditions on the sides of nonzero degree. We prove that as the elasticity constant goes to zero in the energy, a limiting uniaxial nematic texture forms with a finite number of defects, all of degree or all of degree , corresponding to vertical disclination lines at those locations. We also state a result on the limiting behavior of minimizers of the Chern–Simons–Higgs model without magnetic field that follows from a similar proof.  相似文献   

6.
A uniform potential flow past a porous circular cylinder with a core of different permeability is discussed. The porous circular cylinder is slightly deformed whose radius is r=r1(1+ecosm q){r=r_1(1+\epsilon \cos m \theta)} , where | e | << 1{\mid\epsilon\mid\ll 1} and m is a positive integer. Here r, θ are the polar coordinates and r 1 is the characteristic radius of the cylinder. The drag force exerted by the exterior flow on the surface of the cylinder is calculated and it depends on the thickness of the porous material and on the permeabilities of the two porous regions. As special cases, porous cylinder with hollow core, rigid core, and deformed cylinder is discussed.  相似文献   

7.
This paper presents accurate elastic solutions for the rotating variable-thickness and/or uniform-thickness orthotropic circular cylinders. The present circular cylinder may contain a uniform-thickness solid core of rigid or homogeneously isotropic material. Different cases of rotating cylinders of various cores are investigated. These cylinders include completely isotropic solid cylinder, uniform-thickness orthotropic cylinder containing an isotropic core, variable-thickness orthotropic cylinder containing an isotropic core, uniform-thickness orthotropic cylinder containing a rigid core, and variable-thickness orthotropic cylinder containing a rigid core. For all cases studied, exact elastic solutions are obtained and numerical results are presented. The results include the radial, hoop, and axial stresses and radial displacement of the five cylinder configurations. The distributions of displacement and stresses through the radial direction of the rotating cylinder are obtained and comparisons between different cases are made at the same angular velocity.  相似文献   

8.
Summary A spherical domain within an anisotropic crystalline material is considered to have elastic constants differing from those of the remainder of the material; the particular case where the constants vanish within the sphere represents a cavity. The elastic fields inside and immediately outside the spherical domain, together with the interaction energy, are calculated for the case of a uniform stress applied at infinity. Specific examples are given for aluminum, copper, and pyrite, and numerical results are compared with those for isotropic material. The tensile stress concentration is larger for aluminum than for isotropic material while the opposite is true for pyrite. Similarly, the interaction energy of the inhomogeneity is larger for an anisotropic material than an isotropic material, but in pyrite the reverse is found.  相似文献   

9.
Elastic fields of circular dislocation and disclination loops are represented in explicit form in terms of spherical harmonics, i.e. via series with Legendre and associated Legendre polynomials. Representations are obtained by expanding Lipschitz-Hankel integrals with two Bessel functions into Legendre series. Found representations are then applied to the solutions of elasticity boundary-value problems of the theory of defects and to the calculation of elastic fields of segmented spherical inclusions. In the framework of virtual circular dislocation–disclination loops technique, a general scheme to solving axisymmetric elasticity problems with boundary conditions specified on a sphere is given. New solutions for elastic fields of a twist disclination loop in a spherical particle and near a spherical pore are demonstrated. The easy and straightforward way for calculations of elastic fields of segmented spherical inclusion with uniaxial eigenstrain is shown.  相似文献   

10.
This paper presents an analytical solution for the interaction of electric potentials,electric displacements,elastic deformations,and thermoelasticity,and describes electromagnetoelastic responses and perturbation of the magnetic field vector in hollow structures(cylinder or sphere),subjected to mechanical load and electric potential.The material properties,thermal expansion coefficient and magnetic permeability of the structure are assumed to be graded in the radial direction by a power law distribution.In the present model we consider the solution for the case of a hollow structure made of viscoelastic isotropic material,reinforced by elastic isotropic fibers,this material is considered as structurally anisotropic material.The exact solutions for stresses and perturbations of the magnetic field vector in FGM hollow structures are determined using the infinitesimal theory of magnetothermoelasticity,and then the hollow structure model with viscoelastic material is solved using the correspondence principle and Illyushin’s approximation method.Finally,numerical results are carried out and discussed.  相似文献   

11.
This paper deals with necessary conditions and sufficient conditions for a weak local minimum of the energy of a hyperelastic body. We consider anisotropic bodies of arbitrary shape, subject to prescribed displacements on a given portion of the boundary. As an example, we consider the uniaxial stretching of a cylinder, in the two cases of compressible and incompressible material. In both cases we find that there is a continuous path across the natural state, made of local energy minimizers. For the Blatz-Ko compressible material and for the Mooney-Rivlin incompressible material, explicit estimates of the minimizing path are given and compared with those available in the literature. Dedicated to the memory of Victor J. Mizel.  相似文献   

12.
Decay rates in a bimaterial circular cylinder under axisymmetric torsion loading are considered via an eigen-expansion near the end of the cylinder. The decay rates depend on the shear modulus ratio of the materials and the radius ratio of inner and outer cylinders. Following the derivation of the traditional Saint-Venant end effect of an isotropic bimaterial cylinder, cases of anisotropic material (transversely isotropic material) and non-traditional Saint-Venant end effect (displacement prescribed on the side surface) are considered. This study sheds some light on the decay studies for other geometric configurations and the deformation modes of composite structures.  相似文献   

13.
The growth kinetics, shape, interfacial and internal orientation texture of a submicron nematic spherulite arising during the isotropic-to-nematic liquid crystal phase transformation under shallow thermal quenches is analyzed using theory, scaling, and numerical simulations based on the Landau – de Gennes model (The Physics of Liquid Crystals, 2nd edn. Clarendon, Oxford). The numerical computations from this model yield interfacial cusp formation that relaxes through the nucleation of two disclination lines of topological charge +1/2 and subsequently leads to intra-droplet texturing and a net topological charge within the spherulite of +1. The timing of these events suggests that cusp formation at the interface is intimately associated with the interfacial defect shedding mechanism (J. Chem. Phys. 124:244902, 2006) for shallow quenches. These results are different than predictions for deep quenches (J. Chem. Phys. 124:244902, 2006) where interfacial defect shedding leads to four defects and a net topological charge of +2. A liquid crystal dynamic shape equation is derived from the Landau – de Gennes model to account for the interface shape changes in terms of surface viscosity, the driving forces due to the uniaxial nematic-isotropic free energy difference, capillary forces, and friction forces, and used to semi-quantitatively show that during cusp formation and defect shedding, gradient elasticity, capillary forces and friction play significant roles in decelerating and accelerating the surface. An interfacial eigenvalue analysis shows that during the shallow quench, disclination lines nucleate within the interface itself and then texturize the nematic droplet as they migrate from within the interface to the bulk of the growing nematic droplet. After defect shedding, the spherulite is nearly circular and grows with constant velocity, in agreement with experiments. The results shed new light on intra-spherulite texturing mechanisms in phase ordering under weak driving forces.   相似文献   

14.
Conditions on the form of the strain energy function in order that homogeneous, compressible and isotropic hyperelastic materials may sustain controllable static, axisymmetric anti-plane shear, azimuthal shear, and helical shear deformations of a hollow, circular cylinder have been explored in several recent papers. Here we study conditions on the strain energy function for homogeneous and compressible, anisotropic hyperelastic materials necessary and sufficient to sustain controllable, axisymmetric helical shear deformations of the tube. Similar results for separate axisymmetric anti-plane shear deformations and rotational shear deformations are then obtained from the principal theorem for helical shear deformations. The three theorems are illustrated for general compressible transversely isotropic materials for which the isotropy axis coincides with the cylinder axis. Previously known necessary and sufficient conditions on the strain energy for compressible and isotropic hyperelastic materials in order that the three classes of axisymmetric shear deformations may be possible follow by specialization of the anisotropic case. It is shown that the required monotonicity condition for the isotropic case is much simpler and less restrictive. Restrictions necessary and sufficient for anti-plane and rotational shear deformations to be possible in compressible hyperelastic materials having a helical axis of transverse isotropy that winds at a constant angle around the tube axis are derived. Results for the previous case and for a circular axis of transverse isotropy are included as degenerate helices. All of the conditions derived here have essentially algebraic structure and are easy to apply. The general rules are applied in several examples for specific strain energy functions of compressible and homogeneous transversely isotropic materials having straight, circular, and helical axes of material symmetry.  相似文献   

15.
16.
This paper contains an analysis of the stress distribution in a long circular cylinder of isotropic elastic material with a circumferential edge crack when it is deformed by the application of a uniform shearing stress. The crack with its center on the axis of the cylinder lies on the plane perpendicular to that axis, and the cylindrical surface is stress-free. By making a suitable representation of the stress function for the problem, the problem is reduced to the solution of a pair of singular integral equations. This pair of singular integral equations is solved numerically, and the stress intensity factor due to the effect of the crack size is tabulated.  相似文献   

17.
A material is cylindrically anisotropic when its elastic moduli referred to a cylindrical coordinate system are constants. Examples of cylindrically anisotropic materials are tree trunks, carbon fibers [1], certain steel bars, and manufactured composites [2]. Lekhnitskii [3] was the first one to observe that the stress at the axis of a circular rod of cylindrically monoclinic material can be infinite when the rod is subject to a uniform radial pressure (see also [4]). Ting [5] has shown that the stress at the axis of the circular rod can also be infinite under a torsion or a uniform extension. In this paper we first modify the Lekhnitskii formalism for a cylindrical coordinate system. We then consider a wedge of cylindrically monoclinic elastic material under anti-plane deformations. The stress singularity at the wedge apex depends on one material parameter γ. For a given wedge angle α, one can choose a γ so that the stress at the wedge apex is infinite. The wedge angle 2α can be any angle. It need not be larger than π, as is the case when the material is homogeneously isotropic or anisotropic. In the special case of a crack (2α=2π) there can be more than one stress singularity, some of them are stronger than the square root singularity. On the other hand, if γ < there is no stress singularity at the wedge apex for any wedge angle, including the special case of a crack. The classical paradox of Levy [6] and Carothers [7] for an isotropic elastic wedge also appears for a cylindrically anisotropic elastic wedge. There can be more than one critical wedge angle and, again, the critical wedge angle can be any angle. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

18.
The uniaxial response of a continuous fiber elastic-perfectly plastic composite is modelled herein as a two-element composite cylinder. An axisymmetric analytical micromechanics solution is obtained for the rate-independent elastic-plastic response of the two-element composite cylinder subjected to tensile loading in the fiber direction for the case wherein the core fiber is assumed to be a transversely isotropic elastic-plastic material obeying Tsai-Hill's yield criterion, with yielding simulating fiber failure. The matrix is assumed to be an isotropic elastic-plastic material obeying Tresca's yield criterion. It is found that there are three different circumstances that depend on the fiber and matrix properties: (1) fiber yield, followed by matrix yielding; (2) complete matrix yield, followed by fiber yielding; and (3) partial matrix yield, followed by fiber yielding, followed by complete matrix yield. The order in which these phenomena occur is shown to have a pronounced effect on the predicted uniaxial effective composite response.  相似文献   

19.
This paper proposes a new homogenization framework for magnetoelastic composites accounting for the effect of magnetic dipole interactions, as well as finite strains. In addition, it provides an application for magnetorheological elastomers via a “partial decoupling” approximation splitting the magnetoelastic energy into a purely mechanical component, together with a magnetostatic component evaluated in the deformed configuration of the composite, as estimated by means of the purely mechanical solution of the problem. It is argued that the resulting constitutive model for the material, which can account for the initial volume fraction, average shape, orientation and distribution of the magnetically anisotropic, non-spherical particles, should be quite accurate at least for perfectly aligned magnetic and mechanical loadings. The theory predicts the existence of certain “extra” stresses—arising in the composite beyond the purely mechanical and magnetic (Maxwell) stresses—which can be directly linked to deformation-induced changes in the microstructure. For the special case of isotropic distributions of magnetically isotropic, spherical particles, the extra stresses are due to changes in the particle two-point distribution function with the deformation, and are of order volume fraction squared, while the corresponding extra stresses for the case of aligned, ellipsoidal particles can be of order volume fraction, when changes are induced by the deformation in the orientation of the particles. The theory is capable of handling the strongly nonlinear effects associated with finite strains and magnetic saturation of the particles at sufficiently high deformations and magnetic fields, respectively.  相似文献   

20.
The large deformation torsion problem for an elastic circular cylinder subject to prescribed twisting moments at its ends is examined for a particular homogeneous isotropic compressible material, namely the Blatz-Ko material. For this material, the displacement equations of equilibrium in three-dimensional elastostatics can lose ellipticity at sufficiently large deformations. For the torsion problem, it is shown that this occurs when the prescribed torque reaches a critical value. For values of the twisting moment greater than this critical value, there is an axial core of the cylinder on which ellipticity holds, surrounded by an annular region where loss of ellipticity has occurred. The physical implications in terms of localized shear bands are briefly discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号