首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The role of the external ear in sonar target localization for prey capture was studied by deflecting the tragus of six big brown bats, Eptesicus fuscus. The prey capture performance of the bat dropped significantly in the tragus-deflection condition, compared with baseline, control, and recovery conditions. Target localization error occurred in the tragus-deflected bat, and mainly in elevation. The deflection of the tragus did not abolish the prey capture ability of the bat, which suggests that other cues are available used for prey localization. Adaptive vocal and motor behaviors were also investigated in this study. The bat did not show significant changes in vocal behaviors but modified its flight trajectories in response to the tragus manipulation. The tragus-deflected bat tended to attack the prey item from above and had lower tangential velocity and larger bearing from the side, compared with baseline and recovery conditions. These findings highlight the contribution of the tragus to vertical sound localization in the free-flying big brown bat and demonstrate flight adaptations the bat makes to compensate altered acoustic cues.  相似文献   

2.
In the previous paper the directional response characteristics of the ferret auditory periphery were examined. In this study further measurements of the spectral transfer functions (STFs) of the auditory periphery were obtained at locations close to the tympanic membrane. There was considerable variation in the STFs recorded from different animals and between recordings made at each end of the auditory canal in the same animal. However, calculation of the so called "location dependency function" demonstrated that changes in the location of the stimulus produced the same pattern of changes in the STFs in all recordings. Changes in the spectral transformation for azimuth locations in the ipsilateral auditory field were examined by calculating the horizon STF. The gain transformations of frequencies below 20 kHz were found to be asymmetrical about the interaural axis so that maximum gain was obtained for anterior stimulus locations. In contrast, the maximum gain for frequencies above 20 kHz was obtained for stimulus locations about the interaural axis, and movement of the stimulus location into either the anterior or posterior fields produced symmetrical reductions in gain. These changes were related to the directional properties of the periphery examined in the previous paper [S. Carlile, J. Acoust. Soc. Am. 88, 2180-2195 (1990)]. The spatial resolution of the monaural information provided by the peripheral STFs is dependent on the rate of change of the transformations as a function of azimuthal displacement of the stimulus location. This was examined by calculating the unsigned first spatial derivative for each frequency in the horizon STF.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
4.
The history of Acoustics is very long, but for modern Acoustics it was only started from the end of 19th century after Bell's and Sabine's works. Modern Acoustics in China was developed even later. The main contributions to the development of modern Acoustics in China of Dah-You MAA and his academic achievements were presented in this paper. It is shown that Dah-You MAA who is one of the founders of the normal mode theory and the modern Acoustics in China has played an important role in developing modern Acoustics. Some preliminary studies of MAA's scientific philosophy and his social activities were discussed in this paper also.  相似文献   

5.
6.
Estimating the direction of arrival of sound in three-dimensional space is typically performed by generalized time-delay processing on a set of signals from a fixed array of omnidirectional microphones. This requires specialized multichannel A/D hardware, and careful arrangement of the microphones into an array. This work is motivated by the desire to instead only use standard two-channel audio A/D hardware and portable equipment. To estimate direction of arrival of persistent sound, the position of the microphones is made variable by mounting them on one or more computer-controlled pan-and-tilt units. In this paper, we describe the signal processing and control algorithm of a device with two omnidirectional microphones on a fixed baseline and two rotational degrees of freedom. Experimental results with real data are reported with both impulsive and speech sounds in an untreated, normally reverberant indoor environment.  相似文献   

7.
Contribution of spectral cues to human sound localization   总被引:1,自引:0,他引:1  
The contribution of spectral cues to human sound localization was investigated by removing cues in 1/2-, 1- or 2-octave bands in the frequency range above 4 kHz. Localization responses were given by placing an acoustic pointer at the same apparent position as a virtual target. The pointer was generated by filtering a 100-ms harmonic complex with equalized head-related transfer functions (HRTFs). Listeners controlled the pointer via a hand-held stick that rotated about a fixed point. In the baseline condition, the target, a 200-ms noise burst, was filtered with the same HRTFs as the pointer. In other conditions, the spectral information within a certain frequency band was removed by replacing the directional transfer function within this band with the average transfer of this band. Analysis of the data showed that removing cues in 1/2-octave bands did not affect localization, whereas for the 2-octave band correct localization was virtually impossible. The results obtained for the 1-octave bands indicate that up-down cues are located mainly in the 6-12-kHz band, and front-back cues in the 8-16-kHz band. The interindividual spread in response patterns suggests that different listeners use different localization cues. The response patterns in the median plane can be predicted using a model based on spectral comparison of directional transfer functions for target and response directions.  相似文献   

8.
Eight listeners were required to locate a train of 4.5-kHz high-pass noise bursts emanating from loudspeakers positioned +/- 30, +/- 20, +/- 10, and 0 deg re: interaural axis. The vertical array of loudspeakers was placed at 45, 90, and 135 deg left of midline. The various experimental conditions incorporated binaural and monaural listening with the latter utilizing the ear nearest or ear farthest from the sound source. While performance excelled when listening with only the near ear, the contribution of the far ear was statistically significant when compared to localization performance when both ears were occluded. Based on head related transfer functions for stimuli whose bandwidth was 1.0 kHz, four spectral cues were selected as candidates for influencing location judgments. Two of them associated relative changes in energy across center frequencies (CFs) with vertical source positions. The other two associated an absolute minimum (maximum) energy for specific CFs with a vertical source position. All but one cue when measured for the near ear could account for localization proficiency. On the other hand, when listening with the far ear, maximum energy at a specific CF outperformed the remaining cues in accounting for localization proficiency.  相似文献   

9.
This paper deals with the construction and characteristics of a specially designed wooden clapper intended to operate as an impulse sound source for measurements in rooms. It is to be used as an alternative impulse sound source for experimental estimations of impulse responses of rooms located at remote and specific places where none of the standard sound sources - an omnidirectional loudspeaker system, etc. - can be used. The paper describes the spectral characteristics and directivity of the clapper impulse. Its features are compared with other impulse sources.  相似文献   

10.
11.
12.
13.
14.
15.
In the present paper a study of sound localization is carried out, considering two different sounds emitted from different hit materials (wood and bongo) as well as a Delta sound. The motivation of this research is to study how humans localize sounds coming from different materials, with the purpose of a future implementation of the acoustic sounds with better localization features in navigation aid systems or training audio-games suited for blind people. Wood and bongo sounds are recorded after hitting two objects made of these materials. Afterwards, they are analysed and processed. On the other hand, the Delta sound (click) is generated by using the Adobe Audition software, considering a frequency of 44.1 kHz. All sounds are analysed and convolved with previously measured non-individual Head-Related Transfer Functions both for an anechoic environment and for an environment with reverberation. The First Choice method is used in this experiment. Subjects are asked to localize the source position of the sound listened through the headphones, by using a graphic user interface. The analyses of the recorded data reveal that no significant differences are obtained either when considering the nature of the sounds (wood, bongo, Delta) or their environmental context (with or without reverberation). The localization accuracies for the anechoic sounds are: wood 90.19%, bongo 92.96% and Delta sound 89.59%, whereas for the sounds with reverberation the results are: wood 90.59%, bongo 92.63% and Delta sound 90.91%. According to these data, we can conclude that even when considering the reverberation effect, the localization accuracy does not significantly increase.  相似文献   

16.
Two-dimensional sound localization by human listeners   总被引:2,自引:0,他引:2  
This study measured the ability of subjects to localize broadband sound sources that varied in both horizontal and vertical location. Brief (150 ms) sounds were presented in a free field, and subjects reported the apparent stimulus location by turning to face the sound source; head orientation was measured electromagnetically. Localization of continuous sounds also was tested to estimate errors in the motor act of orienting with the head. Localization performance was excellent for brief sounds presented in front of the subject. The smallest errors, averaged across subjects, were about 2 degrees and 3.5 degrees in the horizontal and vertical dimensions, respectively. The sizes of errors increased, for more peripheral stimulus locations, to maxima of about 20 degrees. Localization performance was better in the horizontal than in the vertical dimension for stimuli located on or near the frontal midline, but the opposite was true for most stimuli located further peripheral. Front/back confusions occurred in 6% of trials; the characteristics of those responses suggest that subjects derived horizontal localization information principally from interaural difference cues. The generally high level of performance obtained with the head orientation technique argues for its utility in continuing studies of sound localization.  相似文献   

17.
18.
19.
By analyzing the differences between binaural recording and real listening, it was deduced that there were some unrevealed auditory localization clues, and the sound pressure distribution pattern at the entrance of ear canal was probably a clue. It was proved through the listening test that the unrevealed auditory localization clues really exist with the reduction to absurdity. And the effective frequency bands of the unrevealed localization clues were induced and summed. The result of finite element based simulations showed that the pressure distribution at the entrance of ear canal was non-uniform, and the pattern was related to the direction of sound source. And it was proved that the sound pressure distribution pattern at the entrance of the ear canal carried the sound source direction information and could be used as an unrevealed localization clue. The frequency bands in which the sound pressure distribution patterns had significant differences between front and back sound source directions were roughly matched with the effective frequency bands of unrevealed localization clues obtained from the listening tests. To some extent, it supports the hypothesis that the sound pressure distribution pattern could be a kind of unrevealed auditory localization clues.  相似文献   

20.
仝欣  齐娜  孟子厚 《声学学报》2018,43(1):101-111
通过分析双耳录音与真实听音之间的差别,推断存在影响听觉方向感知的隐性线索,而由头部及外耳结构引起的耳道入口处截面声压分布模态可能是其中一种。首先,通过听音实验利用反证法证明听觉方向感知隐性线索确实存在,并归纳总结出隐性线索的有效作用频段;然后,利用有限元仿真方法计算耳道入口处的声压分布,仿真结果表明耳道入口处声压分布是不均匀的,且分布模态与声源方向有关,从数值仿真的角度验证了耳道入口处截面的声压分布模态携带了声源方向信息,可以作为一种隐性定位线索;仿真计算所得前、后声源方向耳道入口处声压分布模态差异显著的频段与听音实验所得的隐性线索有效频段基本相符,在一定程度上支持耳道入口处声压分布模态是一种方向感知隐性线索的推测。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号