首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到4条相似文献,搜索用时 15 毫秒
1.
Ball milling for long time (such as 10, 20, and 30 h) can transform Fe84.94Si9,68A15.38 alloy powders with irregular shapes into flakes. X-ray diffraction (XRD) and M6ssbauer measurements have proven that the unmilled particles and the flakes obtained by milling for 10 h have the same D03-type superlattice structure. The flakes obtained by milling for 20 h and 30 h have the same disorder a-Fe(Si, A1) structure. There are more than 6 absorption peaks in the transmis- sion MSssbauer spectra (TMSs) for the particles with D03-type superlattice structure, which can be fitted with 5 sextets representing 5 different Fe-site environments. However, only 6 TMS absorption peaks have been found for particles with a disorder a-Fe(Si, A1) structure, which can be fitted with the distributions of M6ssbauer parameters (Bhf, isomer shift). The TMS results show that the flaky particles have a stronger tendency to possess the planar magnetic anisotropy. As the result, the flakes have larger microwave permeability values than particles with irregular shapes. The conversion electron M6ssbauer spectra (CEMSs) also show the significantly different Fe-sites environments between the alloy surface and the inside.  相似文献   

2.
Microwave absorbing characteristics of carbonyl iron/epoxy resin composite with various volume concentrations were investigated in 0.1-18 GHz. According to the electromagnetic parameters and thicknesses of the sample, numerical calculation and experiment have demonstrated that the frequency dependence of the microwave absorption comply with the quarter-wavelength (λ/4) matching model that may explain not only the peak frequency but also the number of the peaks. It implies that the quarter-wavelength condition can be successfully applied to understand and predict the peak frequency of the microwave absorption for ferromagnetic metal-based composites.  相似文献   

3.
Microwave–hydrothermal (MH) route was employed to synthesize various iron oxide phases in ultra-fine crystalline powders by using ferrous sulphate and sodium hydroxide as starting chemicals. All chemical reactions were carried out under identical MH conditions, namely, at 190°C, 154 psi, 30 min, by varying the molar ratio (MR) of FeSO4/NaOH in the aqueous solutions. The variation of MR has a dramatic effect on the crystallization behavior of various phases of iron oxides under MH processing conditions. For example, spherical agglomerates of Fe3O4 powder were obtained if MR equal to 0.133 (pH?>?10 sample A). On the other hand non-stoichiometric Fe3O4 powders (Sample B) were obtained for all higher MR of FeSO4/NaOH between 0.133 and 4.00 (6.6?2O3 powders (sample C) were produced. Fe57 Mössbauer spectra were recorded for all the three sets of samples at room temperature. In the case of sample B, temperature dependent Mössbauer spectra were recorded in the range of 77–300 K to understand the non-stoichiometric nature of Fe3O4 powders. All these results are discussed in the present paper.  相似文献   

4.
In this work, the influence of interface reflections on the microwave reflection loss (RL) for carbonyl iron/paraffin composite backed by a perfect conduction plate with 30 vol% concentration at various thicknesses was investigated in the 0.1-18 GHz. Using a vector network analyzer, the scattering parameters (S11 and S21) were measured in two different ways. Based on the quarter-wavelength matching model, the results of measurement were analyzed. The experiment shows that there are many minimum values (dips) in RL at various thicknesses when the reflective wave, which is reflected from the absorbing layer and the emerging wave, which is reflected from the backed metal plate are out of phase by 180°, and the peak intensity of the RL is directly affected by the intensity of the reflective wave and the emerging wave. Furthermore, the experiment and numerical calculation demonstrates that the modulus of the normalized input impedance |Zin/Z0| equals approximately 1, but the ratio between the modulus of permittivity and permeability |ε/μ| is far from unity at the minimal reflection point.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号