首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We discuss the influence of periodic orbits on the dissociation of a model diatomic molecule driven by a strong bichromatic laser fields. Through the stability of periodic orbits, we analyze the dissociation probability when parameters, such as the two amplitudes and the phase lag between the laser fields, are varied. We find that qualitative features of dissociation can be reproduced by considering a small set of short periodic orbits. The good agreement with direct simulations demonstrates the importance of bifurcations of short periodic orbits in the dissociation dynamics of diatomic molecules.  相似文献   

2.
We discuss the semiclassical periodic orbit theory (POT) and some of its recent extensions which are applicable also to systems exhibiting a transition from integrable to chaotic behaviour. We apply the POT to give a semiclassical interpretation of shell effects in free metal clusters and semiconductor quantum dots in terms of classical periodic orbits. In particular, we study the ground-state deformations of large metal clusters and discuss the recently observed conductance oscillations in a circular quantum dot under the influence of an external magnetic field. We also predict the shell structure of a triangular quantum dot, using as models a triangular billiard and the Hénon-Heiles potential including weak magnetic fields.  相似文献   

3.
Quantum chaos, understood as the effect of the underlying classical dynamics on the stationary quantum properties in classically chaotic systems, is examined in two molecular floppy systems. Realistic models of two degrees of freedom for HO2 and HCN/HNC are considered. The structure of the classical phase space is studied using Poincaré surfaces of section and the dynamical characteristics of the corresponding wave functions analyzed also in phase space with the aid of Husimi functions. Some wave functions show strong localization along periodic orbits. © 2002 John Wiley & Sons, Inc. Int J Quantum Chem, 2001  相似文献   

4.
We present a theory for rigorous quantum scattering calculations of probabilities for chemical reactions of atoms with diatomic molecules in the presence of an external electric field. The approach is based on the fully uncoupled basis set representation of the total wave function in the space-fixed coordinate frame, the Fock-Delves hyperspherical coordinates, and the adiabatic partitioning of the total Hamiltonian of the reactive system. The adiabatic channel wave functions are expanded in basis sets of hyperangular functions corresponding to different reaction arrangements, and the interactions with external fields are included in each chemical arrangement separately. We apply the theory to examine the effects of electric fields on the chemical reactions of LiF molecules with H atoms and HF molecules with Li atoms at low temperatures and show that electric fields may enhance the probability of chemical reactions and modify reactive scattering resonances by coupling the rotational states of the reactants. Our preliminary results suggest that chemical reactions of polar molecules at temperatures below 1 K can be selectively manipulated with dc electric fields and microwave laser radiation.  相似文献   

5.
The interaction of diatomic molecules with an ac electric field is described by a periodically driven rigid rotor model Hamiltonian. Numerical studies of the classical and quantum dynamics reveal a remarkably close correspondence between classically chaotic dynamics and quantum time evolution. Unlike the periodically kicked rotor all the quasienergy states located in the (bounded) chaotic region in phase space are extended states. Expanded in the free rotor basis, their coefficients fullfill the statistical predictions for random vectors. Consequently, even in off resonance condition the probability for transfering angular momentum to the diatomic molecule is large and eventually the firstj m excited rotational states will be “democratically” populated. The value ofj m is determined by the bounded chaotic region in phase space. The rotational occupation probability shows an erratic behavior with fluctuations following the statistical predictions for random quantum states.  相似文献   

6.
The diffuse vibrational bands, observed in the ultraviolet photodissociation spectrum of nitrous oxide by exciting the molecule in the first (1)A' state, have recently been attributed to resonances localized mainly in the NN stretch and bend degrees of freedom. To further investigate the origin of this localization, fundamental families of periodic orbits emanating from several stationary points of the (1)A' potential energy surface and bifurcations of them are computed. We demonstrate that center-saddle bifurcations of periodic orbits are the main mechanism for creating stable regions in phase space that can support the partial trapping of the wave packet, and thus they explain the observed spectra. A non-linear mechanical methodology, which involves the calculation of equilibria, periodic orbits, and transition states in normal form coordinates, is applied for an in detail exploration of phase space. The fingerprints of the phase space structures in the quantum world are identified by solving the time dependent Schro?dinger equation and calculating autocorrelation functions. This demonstrates that different reaction channels could be controlled if exact knowledge of the phase space structure is available to guide the initial excitation of the molecule.  相似文献   

7.
The Huggins band of ozone is investigated by means of dynamics calculations using a new (diabatic) potential energy surface for the 3 (1)A'(1B2) state. The good overall agreement of the calculated spectrum of vibrational energies and intensities with the experimental spectrum, especially at low to intermediate excitation energies, is considered as evidence that the Huggins band is due to the two C(s) potential wells of the 1B2 state rather than the single C2v well of the 2 (1)A'(1A1) state. The vibrational assignment of the "cold bands," based on the nodal structure of wave functions, on the whole supports the most recent experimental assignment [J. Chem. Phys. 115, 9311 (2001)]. The quantum mechanical spectrum is analyzed in terms of classical periodic orbits and the structure of the classical phase space.  相似文献   

8.
Observables in coherent, multiple-pulse infrared spectroscopy may be computed from a vibrational nonlinear response function. This response function is conventionally calculated quantum-mechanically, but the challenges in applying quantum mechanics to large, anharmonic systems motivate the examination of classical mechanical vibrational nonlinear response functions. We present an approximate formulation of the classical mechanical third-order vibrational response function for an anharmonic solute oscillator interacting with a harmonic solvent, which establishes a clear connection between classical and quantum mechanical treatments. This formalism permits the identification of the classical mechanical analog of the pure dephasing of a quantum mechanical degree of freedom, and suggests the construction of classical mechanical analogs of the double-sided Feynman diagrams of quantum mechanics, which are widely applied to nonlinear spectroscopy. Application of a rotating wave approximation permits the analytic extraction of signals obeying particular spatial phase matching conditions from a classical-mechanical response function. Calculations of the third-order response function for an anharmonic oscillator coupled to a harmonic solvent are compared to numerically correct classical mechanical results.  相似文献   

9.
Exact circular periodic orbits for a hydrogen atom in a strong circularly polarised laser field are derived. A stability analysis shows one orbit to be stable or unstable depending on the laser parameters, whereas the other orbit is always unstable. These orbits are expected to manifest themselves as resonances in laser assistede ? ?H + scattering. The binding mechanism for these resonances is provided by the trapping of the quantum mechanical wave function onto the neighbourhood of a classical periodic orbit. This mechanism is analogous to that for a Wannier ridge resonance in a doubly excited two-electron atom.  相似文献   

10.
We present a discretization method that allows one to interpret measurements on diffraction of diatomic molecules from solid surfaces using six-dimensional (6D) classical trajectory calculations. It has been applied to the D2NiAl(110) and H2Pd(111) systems (which are models for activated and nonactivated dissociative chemisorption, respectively) using realistic potential energy surfaces obtained from first principles. Comparisons with experimental results and 6D quantum dynamical calculations show that, in general, the method is able to predict the relative intensity of the most important diffraction peaks. We therefore conclude that classical mechanics can be an efficient guide for experimentalists in the search for the most significant diffraction channels.  相似文献   

11.
We investigate, by means of classical and quantum mechanics, how isotopic substitution (H/D) affects the vibrational dynamics of HCP. The analysis of periodic orbits, including the location of the principal families as well as saddle node bifurcations, reveals a totally different picture for the phase-space resonance structure for HCP and DCP. While HCP is characterized by a 1:2 resonance between the CP stretch and the bending mode, DCP shows a 1:2 resonance between the two stretching degrees of freedom. Saddle node bifurcations, which are associated with large-amplitude motion of H/D moving from the C- to the P-end, appear at considerably higher energies in DCP than in HCP. These results are in accord with exact quantum mechanical calculations of the vibrational levels. Received: 24 June 1998 / Accepted: 10 August 1998 / Published online: 9 October 1998  相似文献   

12.
We consider the use in quantum Monte Carlo calculations of two types of valence bond wave functions based on strictly localized active orbitals, namely valence bond self-consistent-field and breathing-orbital valence bond wave functions. Complemented by a Jastrow factor, these Jastrow-valence-bond wave functions are tested by computing the equilibrium well depths of the four diatomic molecules C(2), N(2), O(2), and F(2) in both variational Monte Carlo and diffusion Monte Carlo. We show that it is possible to design compact wave functions based on chemical grounds that are capable of describing both static and dynamic electron correlations. These wave functions can be systematically improved by inclusion of valence bond structures corresponding to additional bonding patterns.  相似文献   

13.
In recent years there has been a resurgence of interest in Bohmian mechanics as a numerical tool because of its local dynamics, which suggest the possibility of significant computational advantages for the simulation of large quantum systems. However, closer inspection of the Bohmian formulation reveals that the nonlocality of quantum mechanics has not disappeared-it has simply been swept under the rug into the quantum force. In this paper we present a new formulation of Bohmian mechanics in which the quantum action, S, is taken to be complex. This leads to a single equation for complex S, and ultimately complex x and p but there is a reward for this complexification-a significantly higher degree of localization. The quantum force in the new approach vanishes for Gaussian wave packet dynamics, and its effect on barrier tunneling processes is orders of magnitude lower than that of the classical force. In fact, the current method is shown to be a rigorous extension of generalized Gaussian wave packet dynamics to give exact quantum mechanics. We demonstrate tunneling probabilities that are in virtually perfect agreement with the exact quantum mechanics down to 10(-7) calculated from strictly localized quantum trajectories that do not communicate with their neighbors. The new formulation may have significant implications for fundamental quantum mechanics, ranging from the interpretation of non-locality to measures of quantum complexity.  相似文献   

14.
The Xiao-Kellman catastrophe map, for the classification of classical periodic orbits of the standard 2:1 Fermi resonance Hamiltonian is extended to species with finite vibrational angular momentum. The influence of the classical periodic orbit structure on different organizations of the quantum mechanical eigenvalues, in the four regions of the map, is strikingly demonstrated. The quantum eigenvalue lattices in angular momentum and energy space show dislocations attributable to a topological effect, termed quantum monodromy. Analogues with quantum monodromy in quasi-linear molecules and LiCN/LiNC isomerisation are demonstrated.  相似文献   

15.
We study wave packet interferometry (WPI) considering the laser pulse fields both classical and quantum mechanically. WPI occurs in a molecule after subjecting it to the interaction with a sequence of phase-locked ultrashort laser pulses. Typically, the measured quantity is the fluorescence of the molecule from an excited electronic state. This signal has imprinted the interference of the vibrational wave packets prepared by the different laser pulses of the sequence. The consideration of the pulses as quantum entities in the analysis allows us to study the entanglement of the laser pulse states with the molecular states. With a simple model for the molecular system, plus several justified approximations, we solve for the fully quantum mechanical molecule-electromagnetic field state. We then study the reduced density matrices of the molecule and the laser pulses separately. We calculate measurable corrections to the case where the fields are treated classically.  相似文献   

16.
17.
It has turned out that the analysis ofclassical periodic orbits is the key to understanding the modulations in thequantal spectra of hydrogen Rydberg atoms in magnetic fields. Inspired by this quantum chaological connection, we analyse some fundamental periodic orbits of the diamagnetic Kepler problem, abandoning the condition of vanishing azimuthal angular momentuml z used in the literature so far. We report the bifurcation and confluence schemes of the orbits in their dependence onl z and discuss the structural changes in terms of catastrophe theory.  相似文献   

18.
Spectral difference methods represent the real-space Hamiltonian of a quantum system as a banded matrix which possesses the accuracy of the discrete variable representation (DVR) and the efficiency of finite differences. When applied to time-dependent quantum mechanics, spectral differences enhance the efficiency of propagation methods for evolving the Schrodinger equation. We develop a spectral difference Lanczos method which is computationally more economical than the sinc-DVR Lanczos method, the split-operator technique, and even the fast-Fourier-Transform Lanczos method. Application of fast propagation is made to quantum control theory where chirped laser pulses are designed to dissociate both diatomic and polyatomic molecules. The specificity of the chirped laser fields is also tested as a possible method for molecular identification and discrimination.  相似文献   

19.
We describe a semiclassical quantum unimolecular reaction rate theory derived from the corresponding classical theory developed by Davis, Gray, Rice and Zhao (DGRZ). The analysis retains the intuitively useful mechanistic distinctions between intramolecular energy transfer and reaction, with the consequence that the semiclassical quantum theory version neglects some interference effects in the reaction dynamics. In the limiting case that intramolecular energy transfer is very fast compared to the rate of reaction we show that the DGRZ representation of the rate constant can be transformed, using the Weyl correspondence between quantum operators and classical variables, to the quantum flux–flux correlation function representation of the rate constant. In the more general case that the rate of intramolecular energy transfer influences the reaction dynamics, the semiclassical representation of the Wigner function for a classical system with both quasiperiodic and chaotic motion is used to obtain the reaction rate constant. Our analysis identifies the quantum analogue of the classical bottleneck to intramolecular energy transfer with the scars of unstable periodic orbits; it leads to a flux–flux correlation function representation of the rate constant for intramolecular energy transfer.  相似文献   

20.
The question in how far classical mechanics can be used to describe coherent control processes in molecules is addressed within the framework of local control theory. Therefore, quantum and classical calculations are compared for a model proton transfer process and also for the multi-photon infrared dissociation of the HOD molecule. It is shown that control fields can be derived classically as long as wave packet dispersion is not too large. This hints at further applications which might be helpful to devise control fields for complex molecular systems being present in biological processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号