首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Quantum scattering calculations are reported for the O(3P)+H2(v=0,1) reaction using chemically accurate potential energy surfaces of 3A' and 3A" symmetry. We present state-to-state reaction cross sections and rate coefficients as well as thermal rate coefficients for the title reaction using accurate quantum calculations. Our calculations yield reaction cross sections that are in quantitative accord with results of recent crossed molecular beam experiments. Comparisons with results obtained using the J-shifting calculations show that the J-shifting approximation is quite reliable for this system. Thermal rate coefficients from the exact calculations and the J-shifting approximation agree remarkably well with experimental results. Our calculations also reproduce the markedly different OH(v'=0)/OH(v'=1) branching in O(3P)+H2(v=1) reaction, observed in experiments that use different O(3P) atom sources. In particular, we show that the branching ratio is a strong function of the kinetic energy of the O(3P) atom.  相似文献   

2.
The radical-radical oxidation reaction, O(3P)+C3H3 (propargyl)-->H(2S)+C3H2O (propynal), was investigated using vacuum-ultraviolet laser-induced fluorescence spectroscopy in a crossed-beam configuration, together with ab initio and statistical calculations. The barrierless addition of O(3P) to C3H3 is calculated to form energy-rich addition complexes on the lowest doublet potential energy surface, which subsequently undergo direct decomposition steps leading to the major reaction products, H+C3H(2)O (propynal). According to the nascent H-atom Doppler-profile analysis, the average translational energy of the products and the fraction of the average transitional energy to the total available energy were determined to be 5.09+/-0.36 kcal/mol and 0.077, respectively. On the basis of a comparison with statistical prior calculations, the reaction mechanism and the significant internal excitation of the polyatomic propynal product can be rationalized in terms of the formation of highly activated, short-lived addition-complex intermediates and the adiabaticity of the excess available energy along the reaction coordinate.  相似文献   

3.
The radical-radical reaction dynamics of ground-state atomic oxygen [O(3P)] with t-butyl radicals (t-C4H9) in the gas phase were investigated using high-resolution laser spectroscopy in a crossed-beam configuration, together with ab initio theoretical calculations. The radical reactants, O(3P) and t-C4H9, were produced by the photodissociation of NO2 and the supersonic flash pyrolysis of the precursor, azo-t-butane, respectively. A new exothermic channel, O(3P)+t-C4H9 --> OH+iso-C4H8, was identified and the nascent rovibrational distributions of the OH (X 2Pi: upsilon" = 0,1,2) products were examined. The population analyses for the two spin-orbit states of F1(2Pi32) and F2(2Pi12) showed that the upsilon" = 0 level is described by a bimodal feature composed of low- and high-N" rotational components, whereas the upsilon" = 1 and 2 levels exhibit unimodal distributions. No noticeable spin-orbit or Lambda-doublet propensities were observed in any vibrational state. The partitioning ratio of the vibrational populations (Pupsilon") with respect to the low-N" components of the upsilon" = 0 level was estimated to be P0:P1:P2 = 1:1.17+/-0.24:1.40+/-0.11, indicating that the nascent internal distributions are highly excited. On the basis of the comparison of the experimental results with the statistical theory, the reaction mechanism at the molecular level can be described in terms of two competing dynamic pathways: the major, direct abstraction process leading to the inversion of the vibrational populations, and the minor, short-lived addition-complex process responsible for the hot rotational distributions. After considering the reaction exothermicity, the barrier height, and the number of intermediates along the addition reaction pathways on the lowest doublet potential energy surface, the formation of CH3COCH3(acetone)+CH3 was predicted to be dominant in the addition mechanism.  相似文献   

4.
The reaction between energetic nitrogen atoms and oxygen molecules has received important attention in connection with nitric oxide chemistry in the lower thermosphere. We report time-independent quantum mechanical calculations of the N(4S)+O2-->NO+O reaction employing the X 2A' and a 4A' electronic potential energy surfaces of Sayos et al. [J. Chem. Phys. 117, 670 (2002)]. We confirm the production of highly vibrationally excited NO molecules, consistent with previous semiclassical and more recent time-dependent quantum wave packet studies. Calculations are carried out for total angular momentum quantum number J=0 and cross sections and rate coefficients are extracted using the J-shifting approximation. The results are in good agreement with available experimental and theoretical data.  相似文献   

5.
A quasiclassical trajectory study with the sixth-order explicit symplectic algorithm of the N(4S)+O2(X 3Sigmag-)-->NO(X 2Pi)+O(3P) atmospheric reaction has been performed by employing the new 2A' and 4A' potential-energy surfaces reported by Sayos et al. [J. Chem. Phys. 117, 670 (2002)]. For the translational temperature considered up to 10,000 K, the larger relative translational energy and the higher rovibrational levels of O2 molecule with respect to the previous works have been taken into account, and a clearer database about the character of the total reaction cross section has been presented in this work. The dependence of microscopic rate constants on the vibrational level of O2 molecule at T=3000, 5000, and 10,000 K has been exhibited, and we can see that the values of log10 k(T,v,J) vary almost linearly with the vibrational level of O2 molecule. The thermal rate constants at the translational temperature between 300 and 10,000 K have been evaluated and compared with the experimental and previous theoretical results. It is found that the thermal rate constants determined in this work have a better agreement with the experimental data and can provide a more valid theoretical reference at the translational temperature considered for the title reaction.  相似文献   

6.
The oxidation reaction dynamics of a saturated hydrocarbon radical t-butyl leading to the isobutene +OH (X 2Pi:v"=0, 1, 2) products in the gas phase were first investigated by applying a combination of high-resolution spectroscopy in a crossed-beam configuration and ab initio calculations. By comparing the nascent OH populations with the statistical theory, the reaction mechanism at the molecular level can be described in terms of two competing dynamic pathways: the major direct abstraction process leading to the inversion of vibrational populations, and the minor short-lived addition-complex process for hot rotational distributions.  相似文献   

7.
Five-dimensional nonadiabatic quantum dynamics studies have been carried out on two new potential energy surfaces of S(2)((1)A(')) and T(7)((3)A(")) states for the title oxygen molecules collision with coplanar configurations, along with the spin-orbit coupling between them. The ab initio calculations are based on complete active state second-order perturbation theory with the 6-31+G(d) basis set. The calculated spin-orbit induced transition probability as a function of collision energy is found to be very small for this energy pooling reaction. The rate constant obtained from a uniform J-shifting approach is compared with the existing theoretical and experimental data, and the spin-orbit effect is also discussed in this electronic energy-transfer process.  相似文献   

8.
First quasiclassical trajectory calculations have been carried out for the C(3P)+OH(X 2Pi)-->CO(X 1Sigma+)+H(2S) reaction using a recent ab initio potential energy surface for the ground electronic state, X 2A', of HCO/COH. Total and state-specific integral cross sections have been determined for a wide range of collision energies (0.001-1 eV). Then, thermal and state-specific rate constants have been calculated in the 1-500 K temperature range. The thermal rate constant varies from 1.78x10(-10) cm3 s-1 at 1 K down to 5.96x10(-11) cm3 s-1 at 500 K with a maximum value of 3.39x10(-10) cm3 s-1 obtained at 7 K. Cross sections and rate constants are found to be almost independent of the rovibrational state of OH.  相似文献   

9.
We have performed quantum mechanical (QM) dynamics calculations within the independent-state approximation with new benchmark triplet A" and A' surfaces [B. Ramachandran et al., J. Chem. Phys. 119, 9590 (2003)] for the rovibronic state-to-state measurements of the reaction O(3P)+HCl(v=2,j=1,6,9)-->OH(v'j')+Cl(2P) [Zhang et al., J. Chem. Phys. 94, 2704 (1991)]. The QM and experimental rotational distributions peak at similar OH(j') levels, but the QM distributions are significantly narrower than the measurements and previous quasiclassical dynamics studies. The OH(low j) populations observed in the measurements are nearly absent in the QM results. We have also performed quasiclassical trajectory with histogram binning (QCT-HB) calculations on these same benchmark surfaces. The QCT-HB rotational distributions, which are qualitatively consistent with measurements and classical dynamics studies using other surfaces, are much broader than the QM results. Application of a Gaussian binning correction (QCT-GB) dramatically narrows and shifts the QCT-HB rotational distributions to be in very good agreement with the QM results. The large QCT-GB correction stems from the special shape of the joint distribution of the classical rotational/vibrational action of OH products. We have also performed QM and QCT calculations for the transition, O+HCl(v=0,T=300 K)-->OH(v'j')+Cl from threshold to approximately 130 kcal mol(-1) collision energy as a guide for possible future hyperthermal O-atom measurements. We find in general a mixed energy release into translation and rotation consistent with a late barrier to reaction. Angular distributions at high collision energy are forward peaked, consistent with a stripping mechanism. Direct collisional excitation channel cross sections, O+HCl(v=0,T=300 K)-->O+HCl(v'=1), in the same energy range are large, comparable in magnitude to the reactive channel cross sections. Although the (3)A" state dominates most collision processes, above approximately 48 kcal mol(-1), the (3)A' state plays the major role in collisional excitation.  相似文献   

10.
The authors report a global potential energy surface for the ground electronic state of HO(2)(X (2)A(")), which improves upon the XXZLG potential [Xu and et al., J. Chem. Phys. 122, 244305 (2005)] with additional high-level ab initio points for the long-range interaction potential in the O+OH channel. Exact J=0 quantum mechanical reaction probabilities were calculated on the new potential and the rate constant for the title reaction was obtained using a J-shifting method. The calculated rate constant is in good agreement with available experimental values and our results predict a significantly lower rate at temperature range below 30 K, offering a possible explanation for the "interstellar oxygen problem."  相似文献   

11.
Quasiclassical trajectory calculations have been carried out for the C((3)P)+OH(X (2)Pi)-->CO(X (1)Sigma(+))+H((2)S) reaction using a recent ab initio potential energy surface for the ground electronic state X (2)A(') of COH. Differential cross sections (DCSs), and product vibrational, rotational and translational distributions have been determined for a wide range of collision energies (0.001-1 eV). The role of excitations (rotation or vibration) of the OH reactant on these quantities has been investigated. Product vibrational, rotational, and translational distributions are found to be almost independent on the rovibrational state of OH, whereas DCSs show a weak dependence on the initial rotational state of OH. We also analyze the results using a study based on the lifetime of the intermediate complex and on the kinematic constraint associated with the mass combination.  相似文献   

12.
The rate constant for the reaction OH(X2Pi) + OH(X2Pi) --> O(3P) + H2O has been measured over the temperature range 293-373 K and pressure range 2.6-7.8 Torr in both Ne and Ar bath gases. The OH radical was created by 193 nm laser photolysis of N2O to produce O(1D) atoms that reacted rapidly with H2O to produce the OH radical. The OH radical was detected by quantitative time-resolved near-infrared absorption spectroscopy using Lambda-doublet resolved rotational transitions of the first overtone of OH(2,0) near 1.47 microm. The temporal concentration profiles of OH were simulated using a kinetic model, and rate constants were determined by minimizing the sum of the squares of residuals between the experimental profiles and the model calculations. At 293 K the rate constant for the title reaction was found to be (2.7 +/- 0.9) x 10(-12) cm(3) molecule(-1) s(-1), where the uncertainty includes an estimate of both random and systematic errors at the 95% confidence level. The rate constant was measured at 347 and 373 K and found to decrease with increasing temperature.  相似文献   

13.
The O(3P)+ reaction has been investigated by employing time‐dependent quantum wave packet with split operator method on potential energy surface of the doublet ground‐state H2O+(12A″). The reaction probabilities and integral cross sections are calculated using centrifugal sudden approximation, which basically agree with the quasi‐classical results of Paniagua et al. [Phys. Chem. Chem. Phys. 2014, 16, 23594]. Moreover, the effect of vibrational and rotational excitation of reactant is investigated. The results show that the vibrational and rotational excitation effects on the integral cross section are not obvious. The little differences between Coriolis coupling results and centrifugal sudden approximation ones show that the cheaper centrifugal sudden calculations here reported are effective for this reaction.  相似文献   

14.
Six new potential energy surfaces of four singlet states and two triplet states for the title oxygen molecule reaction along with the spin-orbit coupling among them have been constructed from the complete active space second-order perturbation theory with a 6-311+G(d) basis. Accurate integral cross sections are calculated with a full six-dimensional nonadiabatic time-dependent quantum wave packet method. The thermal rate constant based on the integral cross sections agrees well with the result of the experimental measurements, and the intersystem crossing effects are also discussed in this electronic energy-transfer process.  相似文献   

15.
16.
The dynamics of the reaction, Y + O2--> YO + O was studied by using the crossed-beam technique at several collision energies from 10.3 to 52.0 kJ mol(-1). The Y atomic beam was generated by laser vaporization and crossed with the O2 beam at a right angle. Among the energetically accessible electronic states of YO, the formation of the A2Pi and A'2Delta states was observed by their chemiluminescence at all collision energies. By analyzing the chemiluminescence spectra of YO(A2Pi(1/2,3/2)-X2Sigma+), vibrational state distributions and relative populations of spin-orbit states were determined for YO(A2Pi(1/2,3/2)). At low collision energies, the vibrational distributions agree quite well with those expected from the statistical energy partitioning, while a little deviation from the statistical expectation was observed at the highest energy, 52.0 kJ mol(-1). The populations of two spin-orbit states are in good agreement with the statistical expectations at all collision energies. The vacuum ultraviolet laser-induced fluorescence (VUV-LIF) technique was employed to determine the distributions of spin-orbit states of the product O(3P(J)) at two collision energies, 20.7 and 52.0 kJ mol(-1). The line shapes of the O atom transitions were analyzed to determine relative branching ratio of the ground state to the excited states of YO, i.e. YO(X2Sigma+)+ O(3P(J))vs. YO(A2Pi and A'2Delta)+ O(3P(J)). The results showed that the electronically excited YO was formed with comparable amount with the ground state which is statistically more favorable, and suggested the occurrence of two mechanisms taking place in the title reaction.  相似文献   

17.
We investigate the vibronic and spin-orbit (SO) coupling effects in the state-selected dynamics of the title reaction with the aid of a time-dependent wave packet approach. The ab initio potential energy surfaces of Capecchi and Werner [Science 296, 715 (2002)] have been employed for this purpose. Collinear approach of the Cl((2)P) atom to the H(2) molecule splits the degeneracy of the (2)P state and gives rise to (2)Sigma and (2)Pi electronic states. These two surfaces form a conical intersection at this geometry. These states transform as 1 (2)A('), 1 (2)A("), and 2 (2)A('), respectively, at the nonlinear configurations of the nuclei. In addition, the SO interaction due to Cl atom further splits these states into (2)Sigma(1/2), (2)Pi(3/2), and (2)Pi(1/2) components at the linear geometry. The ground-state reagent Cl((2)P(3/2))+H(2) correlates with (2)Sigma(1/2) and (2)Pi(3/2), where as the SO excited reagent Cl(*)((2)P(1/2))+H(2) correlates with (2)Pi(1/2) at the linear geometry. In order to elucidate the impact of the vibronic and SO coupling effects on the initial state-selected reactivity of these electronic states we carry out quantum scattering calculations based on a flux operator formalism and a time-dependent wave packet approach. In this work, total reaction probabilities and the time dependence of electronic population of the system by initiating the reaction on each of the above electronic states are presented. The role of conical intersection alone on the reaction dynamics is investigated with a coupled two-state model and for the total angular momentum J=0 (neglecting the electronic orbital angular momentum) both in a diabatic as well as in the adiabatic electronic representation. The SO interaction is then included and the dynamics is studied with a coupled three-state model comprising six diabatic surfaces for the total angular momentum J=0.5 neglecting the Coriolis Coupling terms of the Hamiltonian. Companion calculations are carried out for the uncoupled adiabatic and diabatic surfaces in order to explicitly reveal the impact of two different surface coupling mechanisms in the dynamics of this prototypical reaction.  相似文献   

18.
The reflected shock tube technique with multipass absorption spectrometric detection of OH radicals at 308 nm (corresponding to a total path length of approximately 4.9 m) has been used to study the dissociation of methanol between 1591 and 2865 K. Rate constants for two product channels [CH3OH + Kr --> CH3 + OH + Kr (1) and CH3OH + Kr --> 1CH2 + H2O + Kr (2)] were determined. During the course of the study, it was necessary to determine several other rate constants that contributed to the profile fits. These include OH + CH3OH --> products, OH + (CH3)2CO --> CH2COCH3 + H2O, and OH + CH3 --> 1,3CH2 + H2O. The derived expressions, in units of cm(3) molecule(-1) s(-1), are k(1) = 9.33 x 10(-9) exp(-30857 K/T) for 1591-2287 K, k(2) = 3.27 x 10(-10) exp(-25946 K/T) for 1734-2287 K, kOH+CH3OH = 2.96 x 10-16T1.4434 exp(-57 K/T) for 210-1710 K, k(OH+(CH3)(2)CO) = (7.3 +/- 0.7) x 10(-12) for 1178-1299 K and k(OH+CH3) = (1.3 +/- 0.2) x 10(-11) for 1000-1200 K. With these values along with other well-established rate constants, a mechanism was used to obtain profile fits that agreed with experiment to within <+/-10%. The values obtained for reactions 1 and 2 are compared with earlier determinations and also with new theoretical calculations that are presented in the preceding article in this issue. These new calculations are in good agreement with the present data for both (1) and (2) and also for OH + CH3 --> products.  相似文献   

19.
We present results of time-dependent quantum mechanics (TDQM) and quasiclassical trajectory (QCT) studies of the excitation function for O(3P) + H2(v = 0-3,j = 0) --> OH + H from threshold to 30 kcal/mol collision energy using benchmark potential energy surfaces [Rogers et al., J. Phys. Chem. A 104, 2308 (2000)]. For H2(v = 0) there is excellent agreement between quantum and classical results. The TDQM results show that the reactive threshold drops from 10 kcal/mol for v = 0 to 6 for v = 1, 5 for v = 2 and 4 for v = 3, suggesting a much slower increase in rate constant with vibrational excitation above v = 1 than below. For H2(v > 0), the classical results are larger than the quantum results by a factor approximately 2 near threshold, but the agreement monotonically improves until they are within approximately 10% near 30 kcal/mol collision energy. We believe these differences arise from stronger vibrational adiabaticity in the quantum dynamics, an effect examined before for this system at lower energies. We have also computed QCT OH(v',j') state-resolved cross sections and angular distributions. The QCT state-resolved OH(v') cross sections peak at the same vibrational quantum number as the H2 reagent. The OH rotational distributions are also quite hot and tend to cluster around high rotational quantum numbers. However, the dynamics seem to dictate a cutoff in the energy going into OH rotation indicating an angular momentum constraint. The state-resolved OH distributions were fit to probability functions based on conventional information theory extended to include an energy gap law for product vibrations.  相似文献   

20.
The radical-radical reaction dynamics of ground-state atomic oxygen [O(3P)] with propargyl radicals (C3H3) has first been investigated in a crossed beam configuration. The radical reactants O(3P) and C3H3 were produced by the photodissociation of NO2 and the supersonic flash pyrolysis of precursor propargyl bromide, respectively. A new exothermic channel of O(3P) + C3H3 --> C3H2 + OH was identified and the nascent distributions of the product OH in the ground vibrational state (X 2Pi:nu" = 0) showed bimodal rotational excitations composed of the low- and high-N" components without spin-orbit propensities. The averaged ratios of Pi(A')/Pi(A") were determined to be 0.60 +/- 0.28. With the aid of ab initio theory it is predicted that on the lowest doublet potential energy surface, the reaction proceeds via the addition complexes formed through the barrierless addition of O(3P) to C3H3. The common direct abstraction pathway through a collinear geometry does not occur due to the high entrance barrier in our low collision energy regime. In addition, the major reaction channel is calculated to be the formation of propynal (CHCCHO) + H, and the counterpart C3H2 of the probed OH product in the title reaction is cyclopropenylidene (1c-C3H2) after considering the factors of barrier height, reaction enthalpy and structural features of the intermediates formed along the reaction coordinate. On the basis of the statistical prior and rotational surprisal analyses, the ratio of population partitioning for the low- and high-N" is found to be about 1:2, and the reaction is described in terms of two competing addition-complex mechanisms: a major short-lived dynamic complex and a minor long-lived statistical complex. The observed unusual reaction mechanism stands in sharp contrast with the reaction of O(3P) with allyl radical (C3H5), a second significant conjugated hydrocarbon radical, which shows totally dynamic processes [J. Chem. Phys. 117, 2017 (2002)], and should be understood based upon the characteristic electronic structures and reactivity of the intermediates on the potential energy surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号