首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper reports synthesis, characterization and structural optimization of amino-thienyl-dioxocyano-pyridine (ATOP) chromophores toward a multifunctional amorphous material with unprecedented photorefractive performance. The structural (dynamic NMR, XRD) and electronic (UV/vis, electrooptical absorption, Kerr effect measurements) characterization of the ATOP chromophore revealed a cyanine-type pi-conjugated system with an intense and narrow absorption band (epsilon(max) = 140 000 L mol(-)(1) cm(-)(1)), high polarizability anisotropy (deltaalpha(0) = 55 x 10(-)(40) C V(-)(1) m(2)), and a large dipole moment (13 D). This combination of molecular electronic properties is a prerequisite for strong electrooptical response in photorefractive materials with low glass-transition temperature (T(g)). Other important materials-related properties such as compatibility with the photoconducting poly(N-vinylcarbazole) (PVK) host matrix, low melting point, low T(g), and film-forming capabilities were optimized by variation of four different alkyl substituents attached to the ATOP core. A morphologically stable PVK-based composite containing 40 wt % of ATOP-3 showed an excellent photorefractive response characterized by a refractive index modulation of Deltan approximately 0.007 and a gain coefficient of Gamma approximately 180 cm(-)(1) at a moderate electrical field strength of E = 35 V microm(-)(1). Even larger effects were observed with thin amorphous films consisting of the pure glass-forming dye ATOP-4 (T(g) = 16 degrees C) and 1 wt % of the photosensitizer 2,4,7-trinitro-9-fluorenylidene-malononitrile (TNFM). This material showed complete internal diffraction at a field strength of only E = 10 V microm(-)(1) and Deltan reached 0.01 at only E = 22 V microm(-)(1) without addition of any specific photoconductor.  相似文献   

2.
ESR study of Mn(2+)-doped sodium hydrogen orthophosphate dihydrate (SHOD) single crystals is done at room temperature. The Mn(2+) spin-Hamiltonian parameters have been evaluated employing a large number of resonant line positions observed for different orientations of the external magnetic field. The values of g, A, B, D, E and a are: 2.0042+/-0.0002, 86+/-2 x 10(-4)cm(-1), 83+/-2 x 10(-4)cm(-1), 238+/-2 x 10(-4)cm(-1), 76+/-2 x 10(-4)cm(-1), 13+/-1 x 10(-4)cm(-1) for site I and 2.0032+/-0.0002, 86+/-2 x 10(-4)cm(-1), 83+/-2 x 10(-4)cm(-1), 238+/-2 x 10(-4)cm(-1), 76+/-2 x 10(-4)cm(-1), 13+/-1 x 10(-4)cm(-1) for site II, respectively. The optical absorption study of the crystal is also done. The observed bands are assigned as transitions from the (6)A(1g)(S) ground state to various excited quartet levels of a Mn(2+) ion in a cubic crystalline field. These bands are fitted with four parameters B, C, D(q) and alpha and the values found for the parameters are B=777 cm(-1), C=3073 cm(-1), D(q)=755 cm(-1), and alpha=76 cm(-1). On the basis of the data obtained the surrounding crystalline field and the nature of metal-ligand bonding are discussed.  相似文献   

3.
EPR study of Mn2+ doped ammonium tartrate single crystals is carried out at room temperature. The spin Hamiltonian parameters are: gx=1.9225+/-0.0002, gy=1.9554+/-0.0002, gz=2.1258+/-0.0002, A=(78+/-2) x 10(-4) cm(-1), B=(75+/-2) x 10(-4) cm(-1), D=(191+/-2) x 10(-4) cm(-1), E=(61+/-2) x 10(-4) cm(-1) and a=(22+/-1) x 10(-4) cm(-1) for site I and gx=1.9235+/-0.0002, gy=1.9574+/-0.0002, gz=2.0664+/-0.0002, A=(78+/-2) x 10(-4) cm(-1), B=(75+/-2) x 10(-4) cm(-1), D=(180+/-2) x 10(-4) cm(-1), E=(57+/-2) x 10(-4) cm(-1) and a=(22+/-1) x 10(-4) cm(-1) for site II, respectively. The observed optical bands are fitted with inter-electronic repulsion parameters (B and C), crystal field parameter (Dq) and Trees correction (alpha) and the values found are B=752, C=2438, Dq=765 and alpha=76 cm(-1). The data obtained are further used to discuss the surrounding crystal field and the nature of metal-ligand bonding in the crystal.  相似文献   

4.
The ESR study of Cu(2+) doped calcium malonate dihydrate has been done at room temperature. Four magnetically in-equivalent sites for Cu(2+) have been observed. The spin-Hamiltonian parameters evaluated with the fitting of spectra to rhombic symmetry crystalline field are for Cu(2+) site (I): g(x)=2.0963+/-0.0002, g(y)=2.1316+/-0.0002, g(z)=2.4137+/-0.0002, A(x)=(32+/-2)x10(-4)cm(-1), A(y)=(34+/-2)x10(-4)cm(-1), A(z)=(49+/-2)x10(-4)cm(-1), for site (II): g(x)=2.0668+/-0.0002, g(y)=2.0800+/-0.0002, g(z)=2.3561+/-0.0002, A(x)=(34+/-2)x10(-4)cm(-1), A(y)=(36+/-2)x10(-4)cm(-1), A(z)=(51+/-2)x10(-4)cm(-1), for site (III): g(x)=2.0438+/-0.0002, g(y)=2.0623+/-0.0002, g(z)=2.2821+/-0.0002, A(x)=(34+/-2)x10(-4)cm(-1), A(y)=(36+/-2)x10(-4)cm(-1), A(z)=(53+/-2)x10(-4)cm(-1), and for site (IV): g(x)=2.0063+/-0.0002, g(y)=2.0241+/-0.0002, g(z)=2.2357+/-0.0002, A(x)=(35+/-2)x10(-4)cm(-1), A(y)=(37+/-2)x10(-4)cm(-1), A(z)=(54+/-2)x10(-4)cm(-1). The ground state wave function of Cu(2+) has also been determined. The g-anisotropy has been estimated and compared with the experimental value. Further with the help of optical study the nature of bonding of metal ion with different ligands in the complex has been discussed.  相似文献   

5.
利用室温电子还原技术合成了一种金纳米颗粒与琼脂糖复合膜。合成过程采用氩气辉光放电为廉价电子源,方便快捷,绿色环保。通过紫外-可见(UV-Vis)分光光度计、透射电子显微镜(TEM)、扫描电子显微镜(SEM)、X射线衍射(XRD)仪、光电子能谱(XPS)等表征,发现可以通过改变氯金酸浓度调控复合膜中金纳米颗粒的分布,加入聚乙烯吡咯烷酮(PVP)可有效控制金纳米颗粒的形貌。由于复合膜具有金纳米颗粒密集排布的结构,可作为表面增强拉曼散射(SERS)活性基底。实验表明,以对氨基苯硫酚为探针,该复合膜作为SERS基底,SERS平均增强因子超过了106,检测限达到了10-12mol?L-1。除此之外,作为SERS基底,复合膜具有良好的均一性和稳定性。  相似文献   

6.
lntroductionThedrivingforcet0pursueresearchonph0t0refractivep0Iymersc0mesfr0mb0thfundamentaIinterestsandpracticalexpectati0ns.Ithasbeenkn0wnthatph0t0refractivematerialsaremultifuncti0nalmateriaIswhichcombinetheelectr0-0ptic(EO)effectandphotoconductivitytomanifestanewpropertyfphotorefractivity'.Sincel990,photorefractivestudieshavebeenextendedintoorganicmaterialsfbothd0pedorganiccrystalsandpolymericmaterials=-'.Organicphotorefractivematerialsexhibitreasonablylargeelectr0-opticresp0nseandalower…  相似文献   

7.
Cross-linkedβ-cyclodextrin polymer/Fe3O4 composite nanoparticles with core-shell structures were prepared via cross linking reaction on the surface of carboxymethylβ-cyclodextrin(CM-β-CD) modified Fe3O4 nanoparticles inβ-cyclodextrin alkaline solution by using epichlorohydrin as crosslinking agent.The morphology,structure and magnetic properties of the prepared composite nanoparticles were investigated by transmission electron microscopy(TEM),Fourier transform infrared(FTIR) spectrometry,X-ray diffraction(XRD) measurement,thermogravimetric analysis(TGA) and Vibrating sample magnetometry (VSM),respectively.  相似文献   

8.
Thin films of the perchlorate salt of an [Os(N,N'-alkylated-2,2'-biimidazole3)2+/3+-containing polymer have been formed on planar platinum microelectrodes. The electrochemical response associated with the Os2+/3+ couple occurs at -0.19 V. In aqueous perchlorate media at near-neutral pH the voltammetric response is close to that expected for an electrochemically reversible reaction involving a surface-confined reactant. Chronoamperometry conducted on a microsecond time scale indicates that the film and solution resistances are comparable for low concentrations of supporting electrolyte. However, for LiClO4 concentrations greater than 0.4 M, RFilm contributes less than 25% of the overall cell resistance. These results suggest that when the film is dehydrated and the density of redox centers is increased, electron or hole hopping dominates the rate of homogeneous charge transport through the film. The rate of homogeneous charge transport, characterized by D(CT)1/2Ceff, where DCT is the homogeneous charge transport diffusion coefficient and Ceff is the effective concentration of osmium centers within the film, depends weakly on the concentration of LiClO4 as supporting electrolyte decreasing from (8.1 +/- 0.16) x 10(-9) to (4.7 +/- 0.4) x 10(-9) mol cm(-2) s(-1/2) as the perchlorate concentration increases from 0.1 to 1.0 M. These values are about 2 orders of magnitude lower than those of the chemically cross-linked chloride salt of the polymer. The rate of heterogeneous electron transfer is unusually rapid in this system and increases from (5.2 +/- 0.4) x 10(-3) to (7.8 +/- 0.4) x 10(-3) cm s(-1) on going from 0.1 to 0.4 M LiClO4 before becoming independent of the supporting electrolyte concentration at (9.2 +/- 0.6) x 10(-3) cm s(-1) for [LiClO4] > or = 0.6 M.  相似文献   

9.
Kinetics of urease denaturation by anionic surfactant (sodium n-dodecyl sulphate, SDS) at concentrations below the critical micelle concentration (CMC) is investigated spectrophotometrically at neutral pH and the corresponding two-phase kinetic parameters of the process are estimated from a three-state reversible process using a binomial exponential relation based on the relaxation time method as: Using a prepared computer program, the experimental data are properly fitted into a binomial exponential relation, considering a two-phase denaturation pathway including a kinetically stable folded intermediate formed at SDS concentration of 1.1 mM. Forward and backward rate constants are estimated as: k(1)=0.2141+/-4.5 x 10(-3), k(2)=5.173 x 10(-3)+/-8.3 x 10(-5), k(-1)=0.09432+/-3.6 x 10(-4) and k(-2)=2.079 x 10(-3)+/-5.6 x 10(-5)s(-1) for the proposed mechanism. The rate-limiting step as well as the reaction coordinates in the denaturation mechanism are established. The mechanism involves formation of a kinetically stable folded native like intermediate through the electrostatic interactions. The intermediate was found to be more stable even than the native form (by about 9 kJmol(-1)) and still hexamer, because no loss of amplitude was observed. Electrophoresis experiments on the native and surfactant/urease complexes indicated a higher mobility for the kinetically folded native like intermediate.  相似文献   

10.
Gao J  Yin XF  Fang ZL 《Lab on a chip》2004,4(1):47-52
A microfluidic system was developed for the analysis of single biological cells, with functional integration of cell sampling, single cell loading, docking, lysing, and capillary electrophoretic (CE) separation with laser induced fluorescence (LIF) detection in microfabricated channels of a single glass chip. Channels were 12 microm deep and 48 microm wide, with a simple crossed-channel design. The effective separation channel length was 35 mm. During sampling with a cell suspension (cell population 1.2 x 10(5) cells per mL in physiological salt solution), differential hydrostatic pressure (created by adjusting liquid levels in the four reservoirs) was used to control cell flow exclusively through the channel crossing. Single cell loading into the separation channel was achieved by electrophoretic means by applying a set of potentials at the four reservoirs, counteracting the hydrostatic flow. A special docking (adhering) procedure for the loaded cell was applied before lysis by repeatedly connecting and disconnecting a set of low potentials, allowing precise positioning of the cell within the separation channel. Cell lysis was then effected within 40 ms under an applied CE separation voltage of 1.4 kV (280 V cm(-1)) within the working electrolyte (pH 9.2 borate buffer) without additional lysates. The docked lysing approach reduced dispersion of released intracellular constituents, and significantly improved the reproducibility of CE separations. Glutathione (GSH) was used as a model intracellular component in single human erythrocyte cells. NDA derivatized GSH was detected using LIF. A throughput of 15 samples h(-1), a retention time precision of 2.4% RSD was obtained for 14 consecutively injected cells. The average cellular concentration of GSH in human erythrocytes was found to be 7.2 [times] 10(-4)+/- 3.3 x 10(-4) M (63 +/- 29 amol per cell). The average separation efficiency for GSH in lysed cells was 2.13 x 10(6)+/- 0.4 x 10(6) plates per m, and was about a factor of 5 higher than those obtained with GSH standards using pinched injection.  相似文献   

11.
首先用无皂乳液聚合法制备了单分散聚苯乙烯(PSt)乳液,以此为种子乳液,使用N,N-亚甲基双丙烯酰胺(MBA)为交联剂,过硫酸钾(KPS)为引发剂,进行苯乙烯和N-乙烯基吡咯烷酮(NVP)共聚合制备了以PSt为核、St和NVP共聚物为壳的具有核-壳结构的聚合物微球(P(St-NVP)).以此微球为模板通过化学沉积法得到了粒径分布均匀、单分散的P(St-NVP)/Ag复合微球.傅里叶红外光谱、X-射线衍射、扫描电镜、透射电镜、激光粒度仪和紫外-可见光谱对复合微球的结构、形貌、物相及催化性能进行了表征.结果表明,P(St-NVP)/Ag复合微球具有规则的球形结构,粒径在400~700 nm之间,随交联剂浓度或种子乳液浓度的增加,复合微球粒径减小.粒径在十几个纳米左右的银粒子均匀分布在微球表面和内部.载银复合微球在NaBH4还原4-硝基苯酚为4-氨基苯酚的模型反应中表现出较高的催化活性.  相似文献   

12.
The rate constant and product branching ratios for the reaction of the cyanato radical, NCO(X (2)Pi), with the ethyl radical, C(2)H(5)(X (2)A'), have been measured over the pressure range of 0.28 to 0.59 kPa and at a temperature of 293 +/- 2 K. The total rate constant, k(1), increased with pressure, P(kPa), described by k(1) = (1.25 +/- 0.16) x 10(-10) + (4.22 +/- 0.35) x 10(-10)P cm(3) molecule(-1) s(-1). Three product channels were observed that were not pressure dependent: (1a) HNCO + C(2)H(4), k(1a) = (1.1 +/- 0.16) x 10(-10), (1b) HONC + C(2)H(4), k(1b) = (2.9 +/- 1.3) x 10(-11), (1c) HCN + C(2)H(4)O, k(1c) = (8.7 +/- 1.5) x 10(-13), with units cm(3) molecule(-1) s(-1) and uncertainties of one-standard deviation in the scatter of the data. The pressure dependence was attributed to a forth channel, (1d), forming recombination products C(2)H(5)NCO and/or C(2)H(5)OCN, with pressure dependence: (1d) k(1d) = (0.090 +/- 1.3) x 10(-11) + (3.91 +/- 0.27) x 10(-10)P cm(3) molecule(-1) s(-1). The radicals were generated by the 248 nm photolysis of ClNCO in an excess of C(2)H(6). Quantitative infrared time-resolved absorption spectrophotometry was used to follow the temporal dependence of the reactants and the appearance of the products. Five species were monitored, HCl, NCO, HCN, HNCO, and C(2)H(4), providing a detailed picture of the chemistry occurring in the system. Other rate constants were also measured: ClNCO + C(2)H(5), k(10) = (2.3 +/- 1.2) x 10(-13) , NCO + C(2)H(6), k(2) = (1.6 +/- 0.11) x 10(-14), NCO + C(4)H(10), k(4) = (5.3 +/- 0.51) x 10(-13), with units cm(3) molecule(-1) s(-1) and uncertainties of one-standard deviation in the scatter of the data.  相似文献   

13.
Composites were prepared by incorporating magnetite (Fe3O4) nanoparticles into the matrix of a sulfonated polyaniline (SPAN) [poly(aniline‐co‐8‐amino‐2‐naphthalenesulfonic acid) PANSA] through chemical oxidative polymerization of a mixture of aniline and 8‐amino‐2‐naphthalenesulfonic acid in the presence of magnetite nanoparticles. The composite, magnetite/SPAN(PANSA) was characterized by means of transmission electron microscopy (TEM), X‐ray diffraction (XRD), elemental analysis (EA), Fourier transform infrared (FT‐IR) spectra, UV‐vis spectroscopy, thermogravimetric analysis (TGA), conductivity and magnetic properties measurements. TEM image shows that magnetite nanoparticles were finely distributed into the SPAN matrix. XRD pattern of the nanocomposite reveals the presence of additional crystalline order through the appearance of a sharp peak at ~43° and 71°. Conductivity of the nanocomposite (0.23 S/cm) is much higher than pristine copolymer (1.97 × 10?2 S/cm). The results of FT‐IR and UV‐visible spectroscopy reveal the presence of molecular level interactions between SO groups in SPAN and magnetite nanoparticles in the composite. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

14.
Effects of octanoic acid (OA) on the morphology, diffraction efficiency, and electro-optic properties of the transmission mode of holographic polymer-dispersed liquid crystals (HPDLC) are studied. Droplet size decreases with increasing OA content (0-9 %), and this leads to a monotonic increase in off-state diffraction with increasing OA content. However, on-state diffraction decreases with increasing applied voltage and shows a minimum at 6 % OA, for which minimum switching voltage (5 V microm(-1)) and maximum contrast ratio (10) are obtained. Rise time and decay time decrease with increasing OA content. Interposition of OA between polymer and LC droplet is theoretically predicted by the spreading coefficient (lambda>0) calculated on the basis of the solubility parameter, while the coalescence behavior of droplets is described by a dimensionless group (gamma d rho / mu(2)) called coalescence number.  相似文献   

15.
The dynamics of electron self-exchange between nanoparticles.   总被引:1,自引:0,他引:1  
The rate of electron self-exchange reactions between discretely charged metal-like cores of nanoparticles has been measured in multilayer films of nanoparticles by an electrochemical method. The nanoparticles are Au monolayer-protected clusters with mixed monolayers of hexanethiolate and mercaptoundecanoic acid ligands, linked to each other and to the Au electrode surface with carboxylate-metal ion-carboxylate bridges. Cyclic voltammetry of the nanoparticle films exhibits a series of well-defined peaks for the sequential, single-electron, double-layer charging of the 1.6-nm-diameter Au cores. The electron self-exchange is measured as a diffusion-like electron-hopping process, much as in previous studies of redox polymer films on electrodes. The average electron diffusion coefficient is DE = 10(+/-5) x 10(-8) cm2/s, with no discernible dependence on the state of charge of the nanoparticles or on whether the reaction increases or decreases the core charge. This diffusion constant corresponds to an average first-order rate constant kHOP of 2(+/-1) x 10(6) s(-1) and an average self-exchange rate constant, kEX, of 2(+/-1) x 10(8) M(-1) x s(-1), using a cubic lattice hopping model. This is a very large rate constant, considering the nominally lengthy linking bridge between the Au cores.  相似文献   

16.
Manganese oxides: parallels between abiotic and biotic structures   总被引:2,自引:0,他引:2  
A large number of microorganisms are responsible for the oxidation of Mn(2+)((aq)) to insoluble Mn(3+/4+) oxides (MnO(x)()) in natural aquatic systems. This paper reports the structure of the biogenic MnO(x)(), including a quantitative analysis of cation vacancies, formed by the freshwater bacterium Leptothrix discophora SP6 (SP6-MnO(x)()). The structure and the morphology of SP6-MnO(x)() were characterized by transmission electron microscopy (TEM), X-ray absorption spectroscopy (XAS), including full multiple-scattering analysis, and powder X-ray diffraction (XRD). The biogenic precipitate consists of nanoparticles that are approximately 10 nm by 100 nm in dimension with a fibrillar morphology that resembles twisted sheets. The results dem-onstrate that this biogenic MnO(x)() is composed of sheets of edge-sharing of Mn(4+)O(6) octahedra that form layers. The detailed analysis of the EXAFS spectra indicate that 12 +/- 4% of the Mn(4+) layer cation sites in SP6-MnO(x)() are vacant, whereas the analysis of the XANES suggests that the average oxidation state of Mn is 3.8 +/- 0.3. Therefore, the average chemical formula of SP6-MnO(x)() is M(n)()(+)(y)()Mn(3+)(0.12)[ square(0.12)Mn(4+)(0.88)]O(2).zH(2)O, where M(n)()(+)(y)() represents hydrated interlayer cations, square(0.12) represents Mn(4+) cation vacancies within the layer, and Mn(3+)(0.12) represents hydrated cations that occupy sites above/below these cation vacancies.  相似文献   

17.
Polymer electrolytes a re essential for next-gene ration lithium batteries because of their excellent safety record.However,low ionic conductivity is the main obstacle restricting their commercial application.Composites with nanoparticles are a promising route to overcome this obstacle.In this work,lithium polystyrene sulfonate brushes(LiPSS)is anchored to silicon dioxide nanoparticles with chemical bonding using atom transfer radial polymerization(SI-ATRP).The composite polymer electrolytes are made by mixing vinylene carbonate and nanoparticles via a facile in situ polymerization process.The ionic conductivity of composite polymer electrolytes is improved to 7.2×10^-4 S/cm at room temperature,which is attributed to the low degree of crystallinity of polymer electrolyte and the fast ion transport on the surfaces of polymer brush layers that act as a conductive network.The composite polymer electrolytes show a wide electrochemical window of approximately 4.5 V vs.Li^+/Li and excellent cycling performance retention of approximately 95%after 100 cycles at ambient temperature.The results also prove that surface groups of ceramic na noparticles are an important way to increase the electrochemical properties of composite polymer electrolytes.  相似文献   

18.
Rate constants were measured for electron attachment to MoF(6), ReF(6), and WF(6) in 133 Pa of helium gas using a flowing-afterglow Langmuir-probe apparatus. The experiment is a thorny one because the molecules tend to form oxide impurities on feedline surfaces and because of thermal decomposition of MoF(6) on surfaces as the gas temperature is increased. The electron attachment rate constant for MoF(6) is (2.3+/-0.8)x10(-9) cm(3) s(-1) at 297 K; only MoF(6) (-) is formed in the temperature range of 297-385 K. The rate constant increases with temperature up to the point where decomposition becomes apparent. Electron attachment to ReF(6) occurs with a rate constant of (2.4+/-0.8)x10(-9) cm(3) s(-1) at 297 K; only ReF(6) (-) is produced. MoF(6) (-) reacts with ReF(6) to form ReF(6) (-) on essentially every collision, showing definitively that the electron affinity of ReF(6) is greater than that of MoF(6). A rate constant of (5.0+/-1.3)x10(-10) cm(3) s(-1) was measured for this ion-molecule reaction at 304 K. The reverse reaction is not observed. The reaction of Ar(+) with MoF(6) was found to produce MoF(5) (+)+F, with a rate constant of (1.8+/-0.5)x10(-9) cm(3) s(-1). WF(6) attaches electrons so slowly at room temperature that the attachment rate was below detection level (< or =10(-12) cm(3) s(-1)). By 552 K, the attachment rate constant reaches a value of (2+/-1)x10(-10) cm(3) s(-1).  相似文献   

19.
Sun JJ  Zhou DM  Fang HQ  Chen HY 《Talanta》1998,45(5):851-856
The electrochemical copolymerization of 3,4-dihydroxybenzoic acid (3,4-DHBA) and aniline was carried out at microdisk gold electrodes by means of cyclic voltammetric sweep. The polymer obtained on the electrode shows good electrochemical activity and high stability even though in neutral and weakly basic media. It was found that the response current of ascorbic acid was greatly enhanced at this composite polymer electrode. Moreover, the anodic overpotential was significantly reduced for about 200 mV (vs. SCE) compared with that obtained at bare gold electrodes. The electrode exhibits a rapid current response (less than 2 s) and a high sensitivity (0.21 AM(-1) cm(-2)). The dependence of response currents on the concentration of ascorbic acid was linear in the range of 1.0x10(-4)-1.0x10(-2) M. In addition this composite polymer modified electrode exhibits a high electrode stability for a long-term use.  相似文献   

20.
The present work deals with phytogenic synthesis of Ag NPs in the natural polymer alginate as support material using Aglaia elaeagnoidea leaf extract as a reducing, capping, and stabilizing agent. Ag nanoparticles embedded in alginate were characterized using UV–Vis absorption spectroscopy, Fourier transform infrared spectroscopy, field emission scanning electron microscopy, energy dispersive X-ray spectroscopy, X-ray diffraction, transmission electron microscopy techniques and selected area electron diffraction techniques. The formation of AgNPs embedded in the polymer was in spherical shape with an average size of 12 nm range has been noticed. The prepared embedded nanoparticles in polymer were evaluated as a solid heterogeneous catalyst for the reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) and methylene blue to leuco methylene blue in the liquid phase using sodium borohydride (NaBH4) as reducing agent. The silver nanoparticles embedded polymer exhibited extraordinary catalytic efficacy in reduction of 4-NP to 4-AP and the rate constant is 0.5054 min?1 at ambient conditions. The catalyst was recycled and reused up to 10 cycles without significant loss of catalytic activity. The preparation of Ag–CA composite was facile, stable, efficient, eco-friendly, easy to recycle, non-toxic, and cost effective for commercial application.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号