首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ultrafast vibrational dynamics of cyclic hydrogen bonded dimers and the underlying microscopic interactions are studied in temporally and spectrally resolved pump-probe experiments with 100 fs time resolution. Femtosecond excitation of the O-H and/or O-D stretching mode gives rise to pronounced changes of the O-H/O-D stretching absorption displaying both rate-like kinetic and oscillatory components. A lifetime of 200 fs is measured for the v=1 state of the O-H stretching oscillator. The strong oscillatory absorption changes are due to impulsively driven coherent wave packet motions along several low-frequency modes of the dimer between 50 and 170 cm(-1). Such wave packets generated via coherent excitation of the high-frequency O-H/O-D stretching oscillators represent a clear manifestation of the anharmonic coupling of low- and high-frequency modes. The underdamped low-frequency motions dephase on a time scale of 1-2 ps. Calculations of the vibrational potential energy surface based on density functional theory give the frequencies, anharmonic couplings, and microscopic elongations of the low-frequency modes, among them intermolecular hydrogen bond vibrations. Oscillations due to the excitonic coupling between the two O-H or O-D stretching oscillators are absent as is independently confirmed by experiments on mixed dimers with uncoupled O-H and O-D stretching oscillators.  相似文献   

2.
The structure of the linear infrared absorption spectrum of the N-H stretching mode in 7-azaindole dimers is analyzed by quartic anharmonic vibrational force field calculations based on density functional theory. It is demonstrated that a multiple Fermi resonance model including contributions from 12 fingerprint vibrational modes, most of them containing considerable contributions of N-H bending motions, combined with a single low-frequency mode satisfactorily explains the complex line shape of N-H stretching mode absorption band.  相似文献   

3.
Anharmonic force fields are a suitable means for identification of vibrational degrees of freedom responsible for the peculiar shape of molecular spectra and the existence of diverse relaxation pathways. In this contribution, we investigated interactions that govern the position of the O-H stretching band in phenol and its dimers with water and ammonia. Dominant couplings are identified, and the nature of relaxation channels is analyzed. The effect of hydrogen bonding on O-H stretching motion and vibrational energy redistribution time through intra- and intermolecular interactions is studied, and possible vibrational predissociation upon O-H stretch excitation is addressed. The results based on computed anharmonic force constants are in accord with the available experimental findings.  相似文献   

4.
Theoretical model for vibrational interactions in the hydrogen-bonded dimer of benzoic acid is presented. The model takes into account anharmonic-type couplings between the high-frequency O-H and the low-frequency O[cdots, three dots, centered]O stretching vibrations in two hydrogen bonds, resonance interactions (Davydov coupling) between two hydrogen bonds in the dimer, and Fermi resonance between the O-H stretching fundamental and the first overtone of the O-H in-plane bending vibrations. The vibrational Hamiltonians and selection rules for the C(2h) geometry in the S(0) state and for the C(s) in-plane bent geometry in the S(1) state of the dimer are derived. The model is used for theoretical simulation of the O-H stretching IR absorption bands of benzoic acid dimers in the gas phase in the electronic ground and first excited singlet states. Ab initio CIS and CIS(D)6-311++G(d,p) calculations have been performed to determine geometry, frequencies, and excited state energies of benzoic acid dimer in the S(1) state.  相似文献   

5.
C?H and C=O stretching modes are two among many structural and dynamic probes of proteins and peptides in condensed phases. Anharmonic properties of these two modes in peptide and sugar have been examined using a second-order perturbative vibrational approach. High order force constants were obtained and examined to ˉnd how crucial they are in determining the degree of mode localization and the nature of mode anharmonicity of the two stretching modes. It is found that the C?H mode is highly localized,and its diagonal anharmonicity is mainly determined by the mode itself. However, the C=O mode is largely delocalized, and the diagonal anharmonicity involves contributions from other modes. The o?-diagonal anharmonicity between C?D and C=O modes is found to be negative in deuterated species, di?ering from those of the non-deuterated ones. It is also found that inter-mode interaction between each of the two modes with low-frequency modes contribute signiˉcantly to the o?-diagonal anharmonicity. These low-frequency modes give rise to a network of energy relaxation or intramolecular vibrational energy redistribution pathways which can be used to examine temporal behavior of intramolecular vibration energy °ow, provided a femtosecond broadband two-dimensional infrared spectroscopy is available.  相似文献   

6.
Theoretical model of vibrational interactions in hydrogen-bonded salicylic acid dimer is presented which takes into account the adiabatic couplings between high- and low-frequency O-H and O...O stretching vibrations, resonance interactions between both intermolecular hydrogen bonds and between inter- and intramolecular hydrogen bonds, and Fermi resonance between the O-H stretching fundamental and the first overtone of the O-H in-plane bending vibrations. The model is used for theoretical simulation of the nu(s) stretching bands of salicylic acid and its OD derivative at 300 K. The effect of deuteration is successfully reproduced by our model. Infrared, far infrared, Raman, and low-frequency Raman spectra of the polycrystalline salicylic acid and its deuterated derivative have been measured. The geometry and experimental frequencies are compared with the results of density-functional theory calculations performed at the B3LYP6-31 ++ G**, B3LYP/cc-pVTZ, B3PW916-31 ++ G**, and B3PW91/cc-pVTZ levels. O-H, O-D, and O...O stretching frequencies are used in theoretical simulation of the nu(s) stretching bands.  相似文献   

7.
Ab initio conformers and dimers have been computed at RHF and B3LYP/6-31G* levels for isomers 2-chloro-3-hydroxybenzaldehyde and 3-chloro-4-hydroxybenzaldehyde to explain the observed infrared absorption and Raman vibrational spectral features in the region 3500-50 cm(-1). The position of the chlorine in ortho position with respect to aldehyde group in 2-chloro-3-hydroxybenzaldehyde yields four distinct conformers; whereas the chlorine in meta position in 3-chloro-4-hydroxybenzaldehyde yields effectively only three conformers. Major spectral features as strong absorptions near 3160-80 cm(-1), down-shifting of the aldehydic carbonyl stretching mode and up-shifting of hydroxyl group's in-plane bending mode are explained using ab initio evidence of O-H?O bond-aided dimerization between the most stable conformers of each molecule. Absorption width of about 700 cm(-1) (~8.28 kJ/mol) of O-H stretching modes suggests a strong hydrogen bonding with the ab initio bond lengths, O-H?O in the range of 2.873-2.832 ?. A strong Raman mode near 110-85 cm(-1) in each molecule is interpreted to be coupled vibrations of pseudo-dimeric trans and cis structures.  相似文献   

8.
The ultrafast relaxation of the excited O-H stretching vibration is studied by ultrafast infrared-pump/infrared-probe and infrared-pump/Raman-probe spectroscopy. We demonstrate a 200 fs lifetime of the hydrogen-bonded O-H stretching mode in 2-(2'-hydroxy-5'-methyl-phenyl)benzotriazole (TINUVIN P). O-H stretching relaxation occurs through a few major channels that all involve combination and overtone bands of modes with considerable in-plane O-H bending character. In particular, the mode, which contains the largest O-H bending contribution, plays a prominent role for primary processes of intramolecular vibrational energy redistribution. Theoretical calculations of vibrational energy transfer rates based on a Fermi golden rule approach account for the experimental findings.  相似文献   

9.
The vibrational spectroscopy of a glycine molecule adsorbed on a silicon surface is studied computationally, using different clusters as models for the surface. Harmonic frequencies are computed using density functional theory (DFT) with the B3LYP functional. Anharmonic frequency calculations are carried out using vibrational self-consistent field (VSCF) algorithms on an improved PM3 potential energy surface. The results are compared with experiments on Glycine@Si(1 0 0)-2 × 1.

The main findings are: (1) Agreement of the computed frequencies with experiment improves with cluster size. (2) The anharmonic calculations are generally in better agreement with experiment than the harmonic ones. The improvements due to anharmonicity are most significant for hydrogenic stretching. (3) An important part of the anharmonic effects is due to anharmonic coupling between different normal modes of the system. (4) The anharmonic coupling between glycine vibrational modes is much larger than the anharmonic coupling between glycine and “phonon” (cluster) modes.

Implications of the results for surface vibrational spectroscopy are discussed.  相似文献   


10.
Vibrational frequencies for fundamental, overtone, and combination excitations of sulfuric acid (H2SO4) and of sulfuric acid monohydrate cluster (H2SO4 x H2O) are computed directly from ab initio MP2/TZP potential surface points using the correlation-corrected vibrational self-consistent field (CC-VSCF) method, which includes anharmonic effects. The results are compared with experiment. The computed transitions show in nearly all cases good agreement with experimental data and consistent improvement over the harmonic approximation. The CC-VSCF improvements over the harmonic approximation are largest for the overtone and combination excitations and for the OH stretching fundamental. The agreement between the calculations and experiment also supports the validity of the MP2/TZP potential surfaces. Anharmonic coupling between different vibrational modes is found to significantly affect the vibrational frequencies. Analysis of the mean magnitude of the anharmonic coupling interactions between different pairs of normal modes is carried out. The results suggest possible mechanisms for the internal flow of vibrational energy in H2SO4 and H2SO4 x H2O.  相似文献   

11.
12.
The high-energy conformer of acetic acid (cis-AA) is produced in an Ar matrix by vibrational excitation of the OH stretching overtone of the ground conformational state (trans-AA). IR-absorption spectroscopy provides a clear identification of the reaction product. cis-AA converts back to trans-AA in a time scale of minutes at 8 K by tunneling.  相似文献   

13.
Cobalt and zinc salts of 1,2,4,5-benzenetetracarboxylic acid (pyromellitic acid), [C(6)H(2)(COO)(4)H(4)], have been synthesized and investigate by polarized Raman spectroscopy. These compounds present short intramolecular hydrogen bonds (SHB) between adjacent carboxyl groups. Raman spectra indicate the presence of this interaction in both salts. Three specific vibrational of SHB modes have been investigated: O-H-O symmetric [nu(sym)(OHO)] and asymmetric [nu(asym)(OHO)] stretching modes and O-H stretching mode [nu(O-H)], which they were observed around 300, 850 and 2500 cm(-1), respectively. In crystallographic point of view, the cobalt salt presents a symmetric SHB while the zinc salt presents an asymmetric SHB. In cobalt salt all three vibrational modes of O-H-O groups in polarized Raman spectra occur in A(g) orientation although in zinc salts two of them are observed in A(g) orientation and one in B(g). Spectra analysis indicate that nu(sym)(OHO) mode is observed as A(g) to cobalt salt and B(g) to zinc salt. This mode occurs in a crowded spectral region and its identification was made by deconvolution techniques. Comparing spectra of the two salts, it is observed a small difference in relative intensity and wavenumber shift of nu(sym)(OHO) (deviance of 43 cm(-1)) and nu(OH) (deviance of 21 cm(-1)) modes due probably to differences in O...O distance between salts and in orientation of pyromellitate anion in unit cell. The nu(asym)(OHO) mode does not present significant wavenumber shift due difference in SHB. The nu(OH) band presents a great potential for hydrogen bond studies due to the fact that in its vibrational region (around 2500 cm(-1)) it is not observed other vibrational modes of these compounds.  相似文献   

14.
Polarization modulation infrared reflectance absorption spectroscopy (PM-IRRAS) and infrared reflectance absorption spectroscopy (IRRAS) have been used to characterize the formation of a self-assembled monolayer of N-(3-dihydroxyborylphenyl)-11-mercaptoundecanamide) (abbreviated PBA) on a gold surface and the subsequent binding of various sugars to the PBA adlayer through the phenylboronic acid moiety to form a phenylboronate ester. Vibrationally resonant sum frequency generation (VR-SFG) spectroscopy confirmed the ordering of the substituted phenyl groups of the PBA adlayer on the gold surface. Solution FTIR spectra and density functional theory were used to confirm the identity of the observed vibrational modes on the gold surface of PBA with and without bound sugar. The detection of the binding of glucose on the gold surface was confirmed in part by the presence of a C-O stretching mode of glucose and the observed O-H stretching mode of glucose that is shifted in position relative to the O-H stretching mode of boronic acid. An IR marker mode was also observed at 1734 cm(-1) upon the binding of glucose. Additionally, changes in the peak profile of the B-O stretching band were observed upon binding, confirming formation of a phenylboronate ester on the gold surface. The binding of mannose and lactose were also detected primarily through the IR marker mode at approximately 1736 to 1742 cm(-1) depending on the identity of the bound sugar.  相似文献   

15.
The active site of several oxygen binding proteins can be mimicked with the ferric iron protoporphyrin IX derivative hemin, coordinating two imidazole molecules and embedded in sodium dodecyl sulfate (SDS) micelles; the detergent simulates the hydrophobic cavity of heme proteins. We studied the low-frequency vibrational modes of the porphyrin-iron-imidazole bonding in infrared absorbance spectra. Assignment of the metal-ligand vibrations to signals at 396, 387, and 378 cm(-1) was performed by isotope labeling of the imidazole ligand. These modes were also found to be temperature-dependent and to display a linear increase of signal intensity between 25 and 150 K and, with a different slope, between 150 and 300 K. The modes at 396 and 399 cm(-1) show for 25 K an up-shift about 4 cm(-1) and the signal at 378 cm(-1) a small downshift, indicating the involvement of antisymmetric stretching modes and, in the latter, of bending motions. Anharmonic couplings to doming modes are discussed, and the doming mode and hydrogen-bonding signature spectral range between 300 and 100 cm(-1) is presented.  相似文献   

16.
Anharmonic vibrational frequencies, equilibrium bond lengths, rotational constants, and vibrational absorption spectra have been calculated for the triatomic anions, FHF(-) and OHF(-), and the heavier isotopomers FDF(-) and ODF(-). The triatomic anions are assumed to maintain a collinear configuration throughout all calculations, so only the symmetric (nu(1)) and asymmetric (nu(3)) stretching modes are considered. The two-dimensional permanent dipole surfaces and potential energy surfaces are then constructed along bond coordinates, using high-level ab initio methods. Fundamental and combination bands are obtained from the vibrational eigenfunctions, resulting in anharmonic frequencies, which can be compared with the available theoretical and experimental data. The agreement is very good, especially for the pure symmetric modes, while the asymmetric ones show larger discrepancies, presumably due to the neglected coupling between stretching and bending modes. Strong inverse anharmonicity is found in the level spacing of the asymmetric modes, for both FHF(-) and OHF(-) anions. The calculated mixed modes (nnu(1)+mnu(3), n, m=0-3) also agree reasonably with the few available experimental data, supporting our model. Based on the vibrational eigenfunctions, isotope effects are also rationalized. Infrared absorption spectra are calculated from the dipole autocorrelation function for FHF(-) and FDF(-), and for OHF(-) and ODF(-). Peak locations and relative intensities are assigned in terms of the fundamental and mixed transitions.  相似文献   

17.
Femtosecond IR-pump-IR-probe experiments with independently tunable pulses are used to monitor the ultrafast response of selected IR absorption bands to vibrational excitation of other modes of Fmoc-nitrophenylalanine. The absorptions of both NO(2)-bands change rapidly within <2 ps upon excitation of other vibrational modes. The results point to considerable coupling between the monitored NO(2) modes and the initially excited modes or low-frequency modes. The latter are populated by a rapid energy redistribution process. The strong IR absorption of the NO(2) stretching bands and the intense coupling to other modes makes the nitro group of nitrophenylalanine a sensitive monitor for vibrational energy arriving at this amino acid.  相似文献   

18.
Intramolecular vibrational energy redistributions of the O-H stretching (nuOH) vibration for the methanol monomer and its water complex, the methanol-water dimer, are investigated by using ab initio full-dimensional classical trajectory calculations. For the methanol monomer, in the high-energy regime of the 5nuOH overtone, the time dependence of the normal-mode energies indicates that energy flowed from the initial excited O-H stretching mode to the C-H stretching mode. This result confirms the experimental observation of energy redistribution between the O-H and C-H stretching vibrations [L. Lubich et al., Faraday Discuss. 102, 167 (1995)]. Furthermore, a lot of dynamical information in the time domain is contained in the power spectra, whose density is given by the Fourier transformation of the total momentum obtained from trajectory calculations. For the methanol-water hydrogen-bonded complex, at the high-energy level of the 5nuOH overtone, the calculated power spectrum shows considerable splitting and broadening, indicating significant energy redistribution through strong coupling between the O-H stretching vibration and other vibrations. It is thus clear that the A-H...B hydrogen-bond formation facilitates energy redistribution subsequent to the vibrational excitation of the hydrogen-bonded A-H stretching mode.  相似文献   

19.
Anharmonic vibrational frequencies for the Raman-active (A(1g)) and the IR-active (A(2u)) modes have been calculated for the LiOH crystal within a plane-wave density functional theory (DFT) framework. We find that a two-dimensional quantum-mechanical vibrational approach, allowing for anharmonic coupling between symmetric and antisymmetric OH stretching modes, produces OH frequencies--both absolute frequencies and gas-to-solid frequency shifts--in good agreement with experiment. Remaining errors in the absolute frequencies are largely a consequence of the DFT model chosen. A one-dimensional normal-mode following vibrational treatment, on the other hand, fails to reproduce both absolute anharmonic frequencies and gas-to-solid frequency shifts.  相似文献   

20.
The results of harmonic and anharmonic frequency calculations on a guanine-cytosine complex with an enolic structure (a tautomeric form with cytosine in the enol form and with a hydrogen at the 7-position on guanine) are presented and compared to gas-phase IR-UV double resonance spectral data. Harmonic frequencies were obtained at the RI-MP2/cc-pVDZ, RI-MP2/TZVPP, and semiempirical PM3 levels of electronic structure theory. Anharmonic frequencies were obtained by the CC-VSCF method with improved PM3 potential surfaces; the improved PM3 potential surfaces are obtained from standard PM3 theory by coordinate scaling such that the improved PM3 harmonic frequencies are the same as those computed at the RI-MP2/cc-pVDZ level. Comparison of the data with experimental results indicates that the average absolute percentage deviation for the methods is 2.6% for harmonic RI-MP2/cc-pVDZ (3.0% with the inclusion of a 0.956 scaling factor that compensates for anharmonicity), 2.5% for harmonic RI-MP2/TZVPP (2.9% with a 0.956 anharmonicity factor included), and 2.3% for adapted PM3 CC-VSCF; the empirical scaling factor for the ab initio harmonic calculations improves the stretching frequencies but decreases the accuracy of the other mode frequencies. The agreement with experiment supports the adequacy of the improved PM3 potentials for describing the anharmonic force field of the G...C base pair in the spectroscopically probed region. These results may be useful for the prediction of the pathways of vibrational energy flow upon excitation of this system. The anharmonic calculations indicate that anharmonicity along single mode coordinates can be significant for simple stretching modes. For several other cases, coupling between different vibrational modes provides the main contribution to anharmonicity. Examples of strongly anharmonically coupled modes are the symmetric stretch and group torsion of the hydrogen-bonded NH2 group on guanine, the OH stretch and torsion of the enol group on cytosine, and the NH stretch and NH out-of-plane bend of the non-hydrogen-bonded NH group on guanine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号