首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Stepwise addition of one equivalent of n-butyllithium and trimethylsilyl chloride to 2-tert-butylmercaptoaniline affords the new ligand 1-(Me3SiNH)-2-(t-BuS)C6H4 (LH), that reacts with one equivalent of butyllithium to its lithium salt LLi. Dioxodichloromolybdenum [MoO2Cl2] and dioxodichlorotungsten dimethoxyethane [WO2Cl2(dme)] react in tetrahydrofuran solution at low temperature with two equivalents LLi to monomeric dioxomolybdenum(VI) [MoO2L2] (1) and dioxotungsten(VI) complex [WO2L2] (2) employing two bidentate amido thioether ligands. The crystallographic determination of the molecular structures of 1 and 2 show evidence for M...S contacts. The reaction of [MoO2Cl2] with LLi in tetrahydrofuran solution at room temperature leads next to 1 to two compounds where silyl group migration from nitrogen to oxygen atoms occurs forming [Mo(=NL')2(OSiMe)2] (3) and [Mo(=NL')2(OSiMe3)L] (4, L' = N-2-t-BuSC6H4) as determined by NMR spectroscopy. Compound 4 was isolated in low yield and its molecular structure determined by X-ray crystallography. Higher yields of a bisimido complex can be obtained by the direct reaction of one equivalent of LLi with [Mo(NAr)2Cl2(dme)] (Ar = 2,6-Me2C6H4) forming [Mo(NAr)2LCl] (5).  相似文献   

2.
The molybdenum oxo-imido complex, [Mo(O)(NtBu)Cl2(dme)] (1), was obtained from the reaction between [MoO2Cl2(dme)] and [Mo(NtBu)2Cl2(dme)]. Reactions between [Mo(O)(NR)Cl2(dme)] (where R = tBu or 2,6-iPr2C6H3) and the disodium Schiff base compounds Na(2)(3,5-tBu2)2salen, Na(2)(3,5-tBu2)2salpen, and Na(2)(7-Me)2salen afforded the first oxo-imido transition metal Schiff base complexes: [Mo(O)(NtBu)[(3,5-tBu2)2salen]] (2), [Mo(O)(NtBu)[(3,5-tBu2)2salpen]] (3), and [Mo(O)(N-2,6-iPr2C6H3)[(7-Me)2salen]] (4), respectively. The compounds [Mo(NtBu)2[(3,5-tBu2)2salpen]] (5) from [Mo(NtBu)2(NHtBu)2] and [Mo(N-2,6-iPr2C6H3)(2)[(7-Me)2salen]](6) from [Mo(N-2,6-iPr2C6H3)(2)(NHtBu)2] (7) are also reported. Compounds 1-7 were characterized by NMR, IR, and FAB mass spectroscopy while compounds 3, 4, and 5 were additionally characterized by X-ray crystallography. In conjunction with tBuOOH as oxidant, compound 3 is a catalyst for the oxidation of benzyl alcohol to benzaldehyde and cis-cyclooctene and 1-octene to the corresponding epoxides.  相似文献   

3.
The preparation and oxygen-atom-transfer (OAT) reactivity of oxoimido complexes [MoO(N-t-Bu)(t-Bu(2)-4-Rpz)(2)] [where R = H (1), Br (2), and Me (3); t-Bu(2)pz = 3,5-di-tert-butylpyrazolate] are reported. The reaction of the potassium salt of the respective pyrazolate ligands and the molybdenum oxoimido precursor, [MoO(N-t-Bu)Cl(2)(dme)] (dme = dimethoxyethane), in toluene afforded complexes 1-3 in good yields. The complexes were fully characterized by (1)H and (13)C NMR and IR spectroscopy, mass spectrometry, elemental analysis, and single-crystal X-ray crystallography. The solid-state structures reveal that, in each case, the molybdenum center is coordinated by one oxo, one N-t-Bu group, and two sterically demanding pyrazolate ligands via their two adjacent nitrogen atoms in an η(2) fashion. Coordination around the metal center is severely distorted from octahedral and might be seen as closely approaching a distorted trigonal-prismatic geometry, which is relevant to the active site of dimethyl sulfoxide reductase in its oxidized form. The potential utility of all of the complexes 1-3 for OAT reactivity toward PMe(3) at room temperature is examined, and plausible mechanistic pathways are explored by density functional theory calculations. Furthermore, the complexes reported here open a new and convenient entry into mixed oxoimidomolybdenum complexes.  相似文献   

4.
A comparative study of the reactivity of isolobal rhenium and molybdenum carbonylmetallates containing a borole, in [Re(eta5-C4H4BPh)(CO)3]- (2), a boratanaphthalene, in [Mo(eta5-2,4-MeC9H6BMe)(CO)3]- (4a) and [Mo(eta5-2,4-MeC9H6BNi-Pr2)(CO)3]- (4b), a boratabenzene, in [Mo(eta5-3,5-Me2C5H3BNi-Pr2)(CO)3]- (6) or a dimethylaminocyclopentadienyl ligand, in [Mo(eta5-C5H4NMe2)(CO)3]- (7), toward palladium(II), gold(I), mercury(II) and platinum(II) complexes has allowed an evaluation of the role of these pi-bonded ligands on the structures and unprecedented coordination modes observed in the resulting metal-metal bonded, heterometallic complexes. The new metallate 6 was reacted with [AuCl(PPh3)], and with 1 or 2 equiv. HgCl2, which afforded the new heterodinuclear complexes [Au{Mo(eta5-3,5-Me2C5H3BNi-Pr2)(CO)3}(PPh3)] (Mo-Au) (10) and [Hg{Mo(eta5-3,5-Me2C5H3BNi-Pr2)(CO)3}Cl] (Hg-Mo) (11) and the heterometallic chain complex [Hg{Mo(eta5-3,5-Me2C5H3BNi-Pr2)(CO)3}2] (Mo-Hg-Mo) (12), respectively. Reactions of the new metallate 7 with HgCl2, trans-[PtCl2(CNt-Bu)2] and trans-[PtCl2(NCPh)2] yielded the heterodinuclear complex [Hg{Mo(eta5-C5H4NMe2)(CO)3}Cl] (Mo-Hg) (15), the heterotrinuclear chain complexes trans-[Pt{Mo(eta5-C5H4NMe2)(CO)3}2(CNt-Bu)2] (Mo-Pt-Mo) (16) and trans-[Pt{Mo(eta5-C5H4NMe2)(CO)3}2(NCPh)2] (Mo-Pt-Mo) (17), the mononuclear complex [Mo(eta5-C5H4NMe2)(CO)3Cl] (18), the lozenge-type cluster [Mo2Pt2(eta5-C5H4NMe2)2(CO)8] (19) and the heterodinuclear complex [[upper bond 1 start]Pt{Mo(eta5-C5H4N[upper bond 1 end]Me2)(CO)3}(NCPh)Cl](Mo-Pt) (20), respectively. The complexes 11, 16, 17.2THF, 18 and 20 have been structurally characterized by X-ray diffraction and 20 differs from all other compounds in that the dimethylaminocyclopentadienyl ligand forms a bridge between the metals.  相似文献   

5.
Reaction of Mo(NAr)2Cl2(DME) (Ar=2,6-C6H3iPr2, DME=1,2-dimethoxyethane) with NaBH4 and PMe3 in THF formed the paramagnetic Mo(V) d1 borohydride complex Mo(NAr)2(PMe3)2(eta2-BH4) (1). Compound 1, which was characterized by EPR spectroscopy and X-ray diffraction analysis, provides a rare example both of a paramagnetic bis(imido) group 6 compound and a structurally characterized molybdenum borohydride complex. Density functional theory calculations were used to determine the electronic structure and bonding parameters of 1 and showed that it is best viewed as a 19 valence electron compound (having a primarily metal-based SOMO) in which the BH4- ligand behaves as a sigma-only, 2-electron donor.  相似文献   

6.
Diimido complexes of the type Mo(NAr)2Cl2(dme) (dme = 1,2-dimethoxyethane) react with N-salicylidene-2-aminophenol (sapH2) in methanol in the presence of 2 equiv of triethylamine to form complexes with the general formula Mo(NAr)(1,2-OC6H4NH)(sap). The structures of three of these compounds (NAr = 2,6-dimethylphenylimido (1), 2,4,6-trimethylphenylimido (2), 2-tert-butylphenylimido3) have been determined by X-ray crystallography. The coordination sphere around the Mo is a distorted octahedron. The oxygen from the 2-aminophenol is trans to the imido nitrogen, whereas the amido nitrogen and the tridentate sap occupy the four equatorial positions. The Mo-N-C imido linkages have angles of 167.5(2) degrees (1), 163.2(2) degrees (2), and 162.4(1) degrees (3). A precursor complex to the imido-amido complex, Mo(NAr)(sap)(OCH3)2 (4, NAr = 2,4,6-trimethylphenylimido), has been isolated and characterized. Compound 4 reacts with 2-aminophenol to form 2, with 2-aminothiophenol to form Mo(NAr)(1,2-SC6H4NH)(sap) (5), with catechol to form Mo(NAr)(1,2-OC6H4O)(sap) (6), with naphthalene-2,3-diol to form Mo(NAr)(naphthalene-2,3-diolate)(sap) (7), with 1,2-benzenedithiol to form Mo(NAr)(1,2-SC6H4S)(sap) (8), and with 1,2-phenylenediamine to form Mo(NAr)(1,2-HNC6H4NH)(sap) (9). The structures of compounds 5-9 have been determined by X-ray crystallography. With the exception of compound 8, the structures are similar to those of 1,2, and 3, with the bidentate ligand occupying one axial and one equatorial position. In 8, 1,2-benzendithiolate occupies two equatorial positions, and the nitrogen from sap is located trans to the imido nitrogen. All complexes were characterized by 1H NMR spectroscopy, cyclic voltammetry, and UV-vis spectroscopy. When a solution of 4 is exposed to moisture-containing air, MoO2(sap)(CH3OH) (10) is formed. The structure of 10 was also determined.  相似文献   

7.
The synthesis and characterization of a series of molybdenum ([MoO(2)Cl(L(n))]; L(1) (1), L(2) (3)) and tungsten ([WO(2)Cl(L(n))]; L(1) (2), L(2) (4)) dioxo complexes (L(1) = 1-methyl-4-(2-hydroxybenzyl)-1,4-diazepane and L(2) = 1-methyl-4-(2-hydroxy-3,5-di-tert-butylbenzyl)-1,4-diazepane) of tridentate aminomonophenolate ligands HL(1) and HL(2) are reported. The ligands were obtained by reductive amination of 1-methyl-1,4-diazepane with the corresponding aldehyde. Complexes 3 and 4 were obtained by the reaction of [MO(2)Cl(2)(dme)(n)] (M = Mo, n = 0; W, n = 1) with the corresponding ligand in presence of a base, whereas for the preparation of 1 and 2 the ligands were deprotonated by KH prior to the addition to the metal. They were characterized by NMR and IR spectroscopy, by cyclic voltammetry, mass spectrometry, elemental analysis and by single-crystal X-ray diffraction analysis. Solid-state structures of the molybdenum and tungsten cis-dioxo complexes reveal hexa-coordinate metal centers surrounded by two oxo groups, a chloride ligand and by the tridentate monophenolate ligand which coordinates meridionally through its [ONN] donor set. In the series of compounds 1-4, complexes 3 and 4 have been used as catalysts for the oxygen atom transfer reaction between dimethyl sulfoxide (DMSO) and trimethyl phosphine (PMe(3)). Surprisingly, faster oxygen atom transfer (OAT) reactivity has been observed for the tungsten complex [WO(2)Cl(L(2))] (4) in comparison to its molybdenum analog [MoO(2)Cl(L(2))] (3) at room temperature. The kinetic results are discussed and compared in terms of their reactivity.  相似文献   

8.
Reaction of ArNCO with syn-[MoO(mu-O)(S2CNR2)]2 or syn-[MoO(mu-NAr)(S2CNR2)]2 at 110 degrees C leads to the facile formation of bridging ureato complexes [Mo2(NAr)2(mu-NAr){mu-ArNC(O)NAr}(S2CNR2)2](Ar = Ph, p-tol; R = Me, Et, Pr), formed upon substitution of all oxo ligands and addition of a further equivalent of isocyanate across one of the bridging imido ligands. Related sulfido-bridged complexes [Mo2(NAr)2(mu-S){mu-ArNC(O)NAr}(S2CNR2)2] have been prepared from syn-[Mo2O2(mu-O)(mu-S)(S2CNR2)2]. When reactions with syn-[MoO(mu-NAr)(S2CNEt2)]2 were followed by NMR, intermediates were observed, being formulated as [Mo2O(NAr)(mu-NAr){mu-ArNC(O)NAr}(S2CNEt2)2], which at higher temperatures convert to the fully substituted products. A crystallographic study of [Mo2(N-p-tol)2(mu-S){mu-p-tolNC(O)N-p-tol}(S2CNPr2)2] reveals that the bridging ureato ligand is bound asymmetrically to the dimolybdenum centre-molybdenum-nitrogen bonds trans to the terminal imido ligands being significantly elongated with respect to those cis-a result of the trans-influence of the terminal imido ligands. This trans-influence also leads to a trans-effect, whereby the exchange of aryl isocyanates can occur in a regioselective manner. This is followed by NMR studies and confirmed by a crystallographic study of [Mo2(N-p-tol)2(mu-N-p-tol){mu-p-tolNC(O)NPh}(S2CNEt2)2]--the PhNCO occupying the site trans to the terminal imido ligands. Ureato complexes also react with PhNCS, initially forming [Mo2(NAr)2(mu-S){mu-ArNC(O)NAr}(S2CNR2)2], resulting from exchange of the bridging imido ligand for sulfur, together with small amounts of [Mo2(NAr)2(mu-S)(mu-S2)(S2CNEt2)2], containing bridging sulfide and disulfide ligands. The ureato complexes [Mo2(NAr)2(mu-S){mu-ArNC(O)NAr}(S2CNR2)2] react further with PhNCS to give [Mo2(NAr)2(mu-S)2(S2CNR2)2]n (n = 1, 2), which exist in a dimer-tetramer equilibrium. In order to confirm these results crystallographic studies have been carried out on [Mo2(N-p-tol)2(mu-S)(mu-S2)(S2CNEt2)2] and [Mo2(N-p-tol)2(mu-S)2(S2CNPr2)2]2.  相似文献   

9.
The reactivity of an aluminium(I) diketiminate compound NacNacAl (NacNac is [ArNC(Me)CHC(Me)NAr]?, where Ar is 2,6-diisopropylphenyl) towards arenes has been systematically explored. Heating NacNacAl in benzene results in a fragmentation of the NacNac moiety due to cleavage of the CN bond, while anthracene adds to the main group carbenoid in a [4+1] fashion. Reactions with phenanthrene, triphenylene and fluoranthene demonstrate a reversible [4+1] addition process.  相似文献   

10.
Carbophosphazene-based coordination ligands [{NC(NMe(2))}(2){NP(3,5-Me(2)Pz)(2)}] (1), [{NC(NEt)(2)}{NC(3,5-Me(2)Pz)}{NP(3,5-Me(2)Pz)(2)}] (2), [NC(3,5-Me(2)Pz)](2)[NP(3,5-Me(2)Pz)(2)] (3), [{NCCl}(2){NP(NC(NMe(2))(2))(2)}] (4), and [{NC(p-OC(5)H(4)N)}(2){NP(NC(NMe(2))(2))(2)}] (5) were synthesized and structurally characterized. In these compounds, the six-membered C(2)N(3)P ring is perfectly planar. The reaction of 1 with CuCl(2) afforded [{NC(NMe(2))}(2){NHP(O)(3,5-Me(2)Pz)}·{Cu(3,5-Me(2)PzH)(2)(Cl)}][Cl] (6). The ligand binds to Cu(II) utilizing the geminal [P(O)(3,5-Me(2)Pz)] coordinating unit. Similarly, the reaction of 2 with PdCl(2) afforded, after a metal-assisted P-N hydrolysis, [{NC(NEt)(2)}{NC(3,5-Me(2)Pz)}{NP(O)(3,5-Me(2)Pz)}·{Pd(3,5-Me(2)PzH)(Cl)}] (7). In the latter, the [P(O)(3,5-Me(2)Pz)] unit does not coordinate; in this instance, the Pd(II) is bound by a ring nitrogen atom and a carbon-tethered pyrazolyl nitrogen atom. The reaction of 3 with PdCl(2) also results in P-N bond hydrolysis affording [{NC(3,5-Me(2)Pz)(2)}{NP(O)(3,5-Me(2)Pz)}{Pd(Cl)}] (8). In contrast to 7, however, in 8, the Pd(II) elicits a nongeminal η(3) coordination from the ligand involving two carbon-tethered pyrazolyl groups and a ring nitrogen atom. Metalated products could not be isolated in the reaction of 3 with K(2)PtCl(4). Instead, a P-O-P bridged carbodiphosphazane dimer, [{NC(3,5-Me(2)Pz)NHC(3,5-Me(2)Pz)}{NP(O)}](2) (9), was isolated as the major product. Finally, the reaction of 5 with PdCl(2) resulted in [{NC(OC(5)H(4)N)}(2){NP(NC(NMe(2))(2))(2)}·{PdCl(2)}] (10). In the latter, the exocyclic P-N bonds are quite robust and are involved in binding to the metal ion. Compounds 6-10 have been characterized by a variety of techniques including X-ray crystallography. In all of the compounds, the bond parameters of the inorganic heterocyclic rings are affected by metalation.  相似文献   

11.
Anilines with alkyl substituents on the phenyl ring (ArNH2 = 2,4,6-trimethylaniline; 2,3-, 2,4-, 2,6-, and 3,4-dimethylaniline; and 2,6-diisopropylaniline) react with MoO(X)2(dtc)2 (X = Cl or Br; dtc = diethyldithiocarbamate) in methanol in the presence of 2 equiv of triethylamine to form ionic imido complexes of the type [MoNAr(dtc)3]2[Mo6O19] or MoNAr(dtc)3]4[Mo8O26]. The same reaction in THF with butyllithium as base yields imido complexes of the type MoNAr(X)2(dtc)2. The structures of three ionic, five chloro, and two bromo complexes have been determined by X-ray crystallography. In all complexes, the molybenum center is a distorted pentagonal bipyramid. While the structures are similar, the angles of the imido linkages differ. The effect of the substituents on the phenyl ring of the imido ligand on the 95Mo NMR chemical shifts was determined. The Mo nucleus becomes more deshielded with the substituents in the following order: 3,4-Me2 < 2,3-Me2 < 2,4-Me2 < 2,6-Me2 < 2,4,6-Me3 < 2,6 isopropyl. Complexes with more deshielded 95Mo centers tend to have angles of the imido linkage that are closer to 180 degrees.  相似文献   

12.
The novel 16-electron molybdenum oxo-imido bis(aryloxide) complexes [Mo(NtBu)(O)(2,6-Me2C6H3O)2(py)] (1) and [Mo(NtBu)(O)(2,6-iPr2C6H3O)2(py)] (2) have been prepared by the salt elimination reactions of [Mo(NtBu)(O)Cl2(DME)] with the appropriate lithium aryloxide and from the cycloaddition reactions of tert-butyl isocyanate with the appropriate molybdenum dioxo bis(aryloxide) complex [Mo(O)2(OAr)2(py)n]. Complexes 1 and 2 are the first isolable and crystallographically characterized molybdenum oxo-imido aryloxide complexes. The geometry around the metal in complexes 1 and 2 is best described as a distorted trigonal bipyramid, with the imido and pyridine ligands occupying the axial positions and the oxo and aryloxide ligands in the equatorial plane. X-ray and IR data have confirmed that the imido ligand is the dominant pi donor in the complexes, resulting in an Mo-O bond order of less than 2.5. Reaction of [Mo(NtBu)(O)Cl2(DME)] with Li(OCH2tBu) instead gave the novel complex [Mo(NtBu)(OCH2tBu)3Cl(py)] (3).  相似文献   

13.
A family of new coordination vanadium(IV) compounds supported by a terminal or bridged aryl imido ligand are reported. Reaction of V(NMe(2))(4) with anilines ArNH(2), where Ar = 2,6-i-Pr(2)-C(6)H(3), 2,6-Me(2)-C(6)H(3), Ph, 2,6-Cl(2)-C(6)H(3), and C(6)F(5), afforded the diamagnetic imido-bridged complexes [V(NAr)(NMe(2))(2)](2) (1a-e). Chlorination of 1a-e with trimethylchlorosilane afforded complexes 2a-e formulated as [V(=NAr)Cl(2)(NHMe(2))(x)()](n)(). One-pot reaction of V(NMe(2))(4) with ArNH(2) in the presence of an excess of trimethylchlorosilane gave the five-coordinate compound [V(=NAr)Cl(2)(NHMe(2))(2)] (3a-e). Reaction of 3a-e with pyridine, bipyridine (bipy), or N,N,N',N'-tetramethylethylenediamine (tmeda) gave respectively the six-coordinate tris- or bis(pyridine) adducts [V(=NAr)Cl(2)(Py)(3)] (4a-e) or [V(=NAr)Cl(2)(Py)(2)(NHMe(2))] (5a), bipyridine complexes [V(=NAr)Cl(2)(bipy)(NHMe(2))] (5a-e) and [V(=NAr)Cl(2)(bipy)(Py)] (9a), and tmeda adduct [V(=NAr)Cl(2)(tmeda)(NHMe(2))] (10a). Moreover, five-coordinate complexes free of NHMe(2) ligands, such as [V(=NAr)Cl(2)(Py)(2)] (5a), [V(=NAr)Cl(2)(bipy)] (8a), and [V(=NAr)Cl(2)(tmeda)] (11a), were directly prepared starting from precursors 2a-e. All compounds were totally characterized by spectroscopic methods (IR, (1)H NMR for diamagnetic complexes, and EPR for paramagnetic complexes), elemental analysis, magnetism, and single-crystal X-ray diffraction studies for 1b, 3a, 3d, 4b, 4d, 7c, 10a, and 11a.  相似文献   

14.
Reaction of [Ti(NR)Cl2(py)3] (R=tBu or 2,6-iPr2C6H3) with K(2)[COT] (COT=C8H8) or Li2[COT'] (COT'=1,4-C8H6(SiMe3)2) gave the monomeric complexes [Ti(NR)(eta8-COT)] or [Ti(NR)(eta8-COT')], respectively. The pseudo-two coordinate, "pogo stick" geometry for these complexes is unique in both early transition-metal and cyclooctatetraenyl ligand chemistry. In contrast, reaction of [Ti(N-2,6-Me2C6H3)Cl2(py)3] with K2[COT] gave the mu-imido-bridged dimer [Ti2(mu-N-2,6-Me2C6H3)2(eta8-COT)2]. It appears that as the steric bulk of the imido and C8 ring substituents are decreased, dimerisation becomes more favourable. Aryl imido COT complexes were also prepared by imido ligand exchange reactions between anilines and [Ti(NtBu)(eta(8)-COT)] or [Ti(NtBu)(eta(8)-COT')]. The complexes [Ti(NtBu)(eta(8)-COT)], [Ti(N-2,6-iPr2C6H3)2(eta8-COT)] and [Ti2(mu-N-2,6-Me2C6H3)2(eta8-COT)2] have been crystallographically characterised. The electronic structures of both the monomeric and dimeric complexes have been investigated by using density functional theory (DFT) calculations and gas-phase photoelectron spectroscopy. The most striking aspect of the bonding is that binding to the imido nitrogen atom is primarily through sigma and pi interactions, whereas that to the COT or COT' ring is almost exclusively through delta symmetry orbitals. A DFT-based comparison between the bonding in [Ti(NtBu)(eta8-COT)] and the bonding in the previously reported late transition-metal "pogo stick"complexes [Os(NtBu)(eta6-C6Me6)], [Ir(NtBu)(eta5-C5Me5)] and [Ni(NO)(eta5-C5H5)] has also been undertaken.  相似文献   

15.
Molybdenum dioxo compounds [MoO2Cl(eta 2-pz)] and [MoO2(eta 2-pz)2] with pz = eta (2)-3,5-di-tert-butylpyrazolate have been synthesized; crystallographic data, catalytic activity, and oxo transfer properties are described.  相似文献   

16.
A pyrazole-substituted diiron dithiolate complex [Fe2(μ-pdt)(CO)5(3,5-Me2Pz)](1,3,5-Me 2Pz=3,5-dimethylpyrazole) was prepared as a biomimetic model for the active site of [FeFe]-hydrogenase by CO-substitution of all-carbonyl complex [Fe2(μ-pdt)(CO)6] with 3,5-Me2Pz. The molecular structure was confirmed by MS, IR, 1H NMR, elemental analysis and single-crystal X-ray analysis. Complex 1 crystallizes in the triclinic system, space group P1 with a=9.108(7), b=9.743(8), c=11.192(9), α=109.235(5), β=101.914(9), γ=96.605(6)o. In CH3CN solution, reversible transformation between 1 and the acetonitrile-substituted species [Fe2(μ-pdt)-(CO)5(NCCH3)] was detected by both IR and cyclic voltammetry (CV). The electrochemical proton reduction catalyzed by 1 in the presence of acetic acid was also studied in CH2Cl2.  相似文献   

17.
The surprising reaction of GaCl3 or InBr3 with the di-Grignard reagent [Me2Si(C5Me4)(N-t-Bu)](MgCl)2 x THF results in salts of the bimetallic anions of composition [X3M[C5Me4(N-t-Bu)]MX2]- (M = Ga, X = Cl; M = In; X = Br) in which the MX2 moiety undergoes an eta2-interaction with one of the double bonds of the localized cyclopentadienide ring.  相似文献   

18.
The reactivity of isolobal molybdenum carbonylmetalates containing a 2-boratanaphthalene, [Mo(eta5-2,4-MeC9H6BMe)(CO)3]- (5a) and [Mo(eta5-2,4-MeC9H6BNi-Pr2)(CO)3]- (5b), a 1-boratabenzene, [Mo(eta5-3,5-Me2C5H3BNi-Pr2)(CO)3]- (8), or a functionalized cyclopentadienyl ligand, the new metalate [Mo(eta5-C5H4Ph)(CO)3]- (7) and [Mo(eta5-C5H4NMe2)(CO)3]- (9), toward palladium (I and II) or platinum (I and II) complexes, such as trans-[PdCl2(NCPh)2], [Pd2(NCMe)6](BF4)2, trans-[PtCl2(PEt3)2], and [N(n-Bu)4]2 [Pt2Cl4(CO)2], has been investigated, and this has allowed an evaluation of the influence of the pi-bonded ligands on the structures and unprecedented coordination modes observed in the resulting metal-metal-bonded heterometallic clusters. The new 58 CVE planar-triangulated centrosymmetric clusters, [Mo2Pd2(eta5-C5H4Ph)2(CO)6(PEt3)2] (11), [Mo2Pd2(eta5-2,4-MeC9H6BNi-Pr2)2(CO)6] (12), [Mo(2)Pd(2)(eta5-3,5-Me2C5H3BNi-Pr2)2(CO)6] (13), [Mo2Pd2(eta5-C5H4NMe2)2(CO)6(PEt3)2] (15), [Mo2Pt2(eta5-C5H4NMe2)2(CO)6(PEt3)2] (16), and [Mo2Pt2(eta5-C5H4NMe2)2(CO)8] (20), have been characterized by single-crystal X-ray diffraction. Their structural features were compared with those of the 54 CVE cluster [Re2Pd2(eta5-C4H4BPh)2(CO)6)] (4), previously obtained from the borole-containing metalate [Re(eta5-C4H4BPh)(CO)3]- (2), in which a 2e-3c B-C(ipso)-Pd interaction involving the pi-ring was observed. As an extension of what has been observed in 4, clusters 12 and 13 present a direct interaction of the boratanaphthalene (12) and the boratabenzene (13) ligands with palladium. In clusters 11, 15, 16, and 20, the pi-ring does not interact with the palladium (11 and 15) or platinum centers (16 and 20), which confers to these clusters a geometry very similar to that of [Mo2Pd2(eta5-C5H5)2(CO)6(PEt3)2] (3b). The carbonylmetalates [Mo(pi-ring)(CO)3]- are thus best viewed as formal four electron donors which bridge a dinuclear d9-d9 unit. The orientation of this building block in the clusters influences the shape of their metal cores and the bonding mode of the bridging carbonyl ligands. The crystal structure of new centrosymmetric complex [Mo(eta5-C5H4Ph)(CO)3]2 (10) was determined, and it revealed intramolecular contacts of 2.773(4) A between the carbon atoms of carbonyl groups across the metal-metal bond and intermolecular bifurcated interactions between the carbonyl oxygen atoms (2.938(4) and 3.029(4) A), as well as intermolecular C-H...pi(Ar)(C=C) interactions (2.334(3) and 2.786(4) A) involving the phenyl substituents.  相似文献   

19.
Cationic complexes [Mo(eta(3)-allyl)(CO)2L3]+ (L3 = either nitrogen-donor tridentate ligand or three monodentate ligands) were prepared in high yield and under mild conditions using as precursors either the triflato complex [Mo(eta(3)-allyl)(OTf)(CO)2(NCMe)2] or the combination of the chloro complex [Mo(eta(3)-allyl)Cl(CO)2(NCMe)2] and the salt NaBAr'(4)(Ar'= 3,5-bis(trifluoromethyl)phenyl). The tridentate ligands employed were 2,2':6',2'-terpyridine (terpy) and cis,cis-1,3,5-cyclohexanetriamine (CHTA), whereas the monodentate ligands imidazole (im) and 3,5-dimethylpyrazole (dmpz) were chosen. In order to stabilize the labile intermediates, an excess of acetonitrile was used in most of the syntheses. However, the pyrazole complex was prepared through a nitrile-free route to avoid reactions at the coordinated nitrile. The solid state structures of [Mo(eta(3)-methallyl)(CO)2(terpy)]OTf (2), [Mo(eta(3)-methallyl)(CO)2(CHTA)]BAr'4 (3), [Mo(eta(3)-methallyl)(CO)2(NCMe)3]BAr'4 (4), [Mo(eta(3)-allyl)(CO)2(im)3]OTf (5) and [Mo(eta(3)-allyl)(CO)2(dmpz)3]BAr'4 (6) were determined by means of single-crystal X-ray diffraction.  相似文献   

20.
Group 5 metal complexes [M(eta5-C5H5)[eta5-C5H4SiMe2(CH2-eta]2-CH=CH2)]X] (M = Nb, X = Me, CH2Ph, CH2SiMe3; M = Ta, X = Me, CH2Ph) and [Ta(eta5-C5Me5)[eta5-C5H4SiMe2(CH2-eta2-CH=CH2)]X] (X = Cl, Me, CH2Ph, CH2SiMe3) containing a chelating alkene ligand tethered to a cyclopentadienyl ring have been synthesized in high yields by reduction with Na/Hg (X = Cl) and alkylation with reductive elimination (X = alkyl) of the corresponding metal(iv) dichlorides [M(eta5-Cp)[eta5-C5H4SiMe2(CH2CH=CH2)]Cl2] (Cp = C5H5, M = Nb, Ta, Cp = C5Me5, M = Ta). These chloro- and alkyl-alkene coordinated complexes react with CO and isocyanides [CNtBu, CN(2,6-Me2C6H3)] to give the ligand-substituted metal(III) compounds [M(eta5-Cp)[eta5-C5H4SiMe2(CH2CH=CH2)]XL] (X = Cl, Me, CH2Ph, CH2SiMe3). Reaction of the chloro-alkene tantalum complex with LiNHtBu results in formation of the imido hydride derivative [Ta(eta5-C5Me5)[eta5-C5H4SiMe2(CH2CH=CH2)]H(NtBu)]. NMR studies for all of the new compounds and DFT calculations for the alkene-coordinated metal complexes are compared with those known for related group 4 metal cations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号