首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
《中国化学快报》2020,31(5):1147-1152
The rigidity of nanoparticles was newly reported to influence their oral delivery. Semi-elastic nanoparticles can enhance the penetration in mucus and uptake by epithelial cells. However, it is still challenging and unclear that the semi-elastic core-shell nanoparticles can enhance the oral bioavailability of peptide drugs. This study was for the first time to validate the semi-elastic core-shell poly(lactic-co-glycolic acid) (PLGA)-lipid nanoparticles (LNPs) as the carrier of the oral peptide drug. The antihypertensive peptide Val-Leu-Pro-Val-Pro (VP5) loaded LNPs (VP5-LNPs) were prepared by a modified thin-film ultrasonic dispersion method. Uptake experiment was performed in Caco-2 and HT-29 cells and monitored by high content screening (HCS) and flow cytometric (FCM). Pharmacokinetics of VP5-LNPs was carried out in Sprague-Dawley (SD) rats and analyzed by DAS 2.0. The optimal VP5-LNPs had an average particle size of 247.3 ± 3.8 nm, zeta potential of −6.57 ± 0.45 mV and excellent entrapment efficiency (EE) of 89.88% ± 1.23%. Transmission electron microscope (TEM) and Differential scanning calorimeter (DSC) further confirmed the core-shell structure. VP5-LNPs could increase the cellular uptake in vitro and have a 2.55-fold increase in AUC0-72 h, indicating a great promotion of the oral bioavailability. The semi-elastic LNPs remarkably improved the oral availability of peptide and could be a promising oral peptide delivery system for peptide drugs in the future.  相似文献   

2.
Hypertension is the leading risk factor for death and disability, and hypertensive patients always need long-term oral antihypertensive drugs. Some bioactive peptides that extracted from animals or plants have shown excellent advantages on antihypertension. However, the oral delivery of these peptides is always failure on account of instability and poor absorption in the gastrointestinal tract. Herein, we developed a core-shell lipid-polymeric nanoparticle for oral delivery of a highly efficient...  相似文献   

3.
Three types of water-soluble polymeric drug carrier systems facilitating targeted drug delivery and controlled drug release were synthesized. All systems consist of an inert soluble synthetic polymer, drug and homing device (targeting moiety). In the first “classical” system, both drug and targeting moiety are bound to a nondegradable polymer by means of biodegradable oligopeptide side chains statistically distributed along the polymer chain. The second, “star-like” system contains a targeting moiety (antibody) in the centre and a hydrophilic polymer, bearing drug molecules, in the shell of the system. The third, “biodegradable” carrier system is based on block copolymers of poly(ethylene glycol) containing biodegradable oligopeptide sequences both in the main polymer chain and in the spacers between main chain and drug molecules. Strategy and details of the synthesis of all three systems are given.  相似文献   

4.
5.
Screening of phage display libraries allows rapid identification of peptides binding to a target. However, functional analysis of the phage sequences and their reproduction as soluble and stable peptides are often the most time-consuming part in the screening. We have used here intein-based peptide biosynthesis to produce a phage-display derived gelatinase inhibitory peptide CTTHWGFTLC and to identify the critical residues for gelatinase inhibitory activity by performing alanine-scanning mutagenesis. By biosynthetic incorporation of 5-fluorotryptophan, we obtained an inhibitor of MMP-2 and MMP-9 gelatinases that showed a 6-fold enhancement in serum stability in comparison to the wild-type peptide. The new peptide also had an improved ability to inhibit tumor cell migration. These studies indicate the utility of intein methodology for synthesis and design of peptides obtained by phage display.  相似文献   

6.
Unfavorable oral bioavailability is an important reason accounting for the failure of the drug candidates. Considering the lack of in vitro high-throughput screening assay for oral bioavailability, it is critical to develop in silico models for early predictions of oral bioavailability. In this review, we summarize present knowledge and recent progress related to the in silico prediction of oral bioavailability, including the current available datasets of oral bioavailability in human, the roles of physiochemical properties contributing to oral bioavailability, and the available theoretical models to predict oral bioavailability. Particularly, the regression model recently developed by us was demonstrated, which is based on the largest dataset of oral bioavailability in human. Although promising progress has been made recently, it is still indispensable to improve the accuracy of the models to predict oral bioavailability.  相似文献   

7.
A smart polymeric composite carrier consisting of carboxylated chitosan grafted nanoparticles (CCGN) and bilaminated films with one alginate-Ca2+ mucoadhesive layer and one hydrophobic backing layer was developed as a novel carrier for peptide. Calcein, hydrophilic and hydrolytic degradative, was entrapped into CCGN as a model peptide and its release behavior was investigated. Morphology study showed a uniform distribution of CCGN in the homogeneous and porous hydrogel. CCGN was characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), particle size measurement, and ζ potential measurement. The composite carrier was characterized by differential scanning calorimetry (DSC), scanning electron microscope (SEM) and fluorescence microscopy. The carrier exhibited high mucoadhesive force and pH-sensitivity, in that release of the nanoparticles and the model peptide calcein were both restricted in acidic environment while a fast and complete release was achieved in neutral medium. Therefore, this novel carrier would be a promising candidate for hydrophilic peptide drugs via oral administration.  相似文献   

8.
Charged Langmuir-Blodgett monolayers deposited at an immobilised liquid-liquid interface have been used as a simple model for a biological membrane to investigate the membrane activity of biotechnological oligopeptide drugs.  相似文献   

9.
The synthesis of targetable conjugates of doxorubicin bound to N-(2-hydroxypropyl)methacrylamide copolymers was investigated. Anti-CD3 antibody against TCR/CD3 complex was used to target the conjugates to T-cells. The effect of structure of the oligopeptide spacer between the drug and polymer as well as of the polymer modification with the antibody on the rate of drug release from the polymeric carrier system incubated in vitro with cathepsin B or with a mixture of intracellular enzymes (tritosomes) is discussed. The results of in vitro drug-release experiments are correlated with the evaluation of T-cell cytotoxicity of targeted and nontargeted polymer-bound doxorubicin conjugates measured in vitro as the inhibition of Con-A stimulated growth of human peripheral blood lymphocytes (3H-thymidine incorporation method).  相似文献   

10.
We present a chemical strategy to engineer analogs of the tumor-homing peptide CREKA (Cys-Arg-Glu-Lys-Ala), which binds to fibrin and fibrin-associated clotted plasma proteins in tumor vessels (Simberg et al. in Proc Natl Acad Sci USA 104:932–936, 2007) with improved ability to inhibit tumor growth. Computer modeling using a combination of simulated annealing and molecular dynamics were carried out to design targeted replacements aimed at enhancing the stability of the bioactive conformation of CREKA. Because this conformation presents a pocket-like shape with the charged groups of Arg, Glu and Lys pointing outward, non-proteinogenic amino acids α-methyl and N-methyl derivatives of Arg, Glu and Lys were selected, rationally designed and incorporated into CREKA analogs. The stabilization of the bioactive conformation predicted by the modeling for the different CREKA analogs matched the tumor fluorescence results, with tumor accumulation increasing with stabilization. Here we report the modeling, synthetic procedures, and new biological assays used to test the efficacy and utility of the analogs. Combined, our results show how studies based on multi-disciplinary collaboration can converge and lead to useful biomedical advances.  相似文献   

11.
12.
13.
A fully synthetic trivalent mimotope of gp120 conjugated to pan allelic HLA DR binding epitope was prepared using solid-phase peptide synthesis and optimized copper-catalyzed azide-alkyne cycloaddition. The methodology efficiently provides chemically uniform heteromultimeric peptide constructs with enhanced binding, avidity, and specificity toward an established HIV-neutralizing human antibody, MAb b12. The versatile synthetic strategy serves as a powerful platform for the development of synthetic peptides as potential HIV-1 vaccine candidates.  相似文献   

14.
By applying a three-dimensional holographic vector of the atomic interaction field (3D-HoVAIF) to express the structure of three classical peptide drugs, quantitative structure activity relationship (QSAR) models are built by the multiple linear regression. The accuracy of the proposed model is illustrated using Q LOO 2 (cross-validation) and r 2 (test set validation). Moreover, the r m 2 metrics is used to further refine the predictive ability of the developed QSAR models. The results show that 3D-HoVAIF, due to the high predictive ability, offers a useful alternative to the costly and time-consuming experiments determining the bioactivity of peptide drugs.  相似文献   

15.
Microencapsulation peptide and protein drugs delivery system   总被引:4,自引:0,他引:4  
Many methods were used to devise peptide and protein drugs delivery system (DDS). Because of their relatively large size, they have low transdermal bioavailabilities. In systemic delivery of proteins, biodegradable material as parenteral depot formulation occupy an important place because of several aspects like protection of sensitive proteins from degradation, prolonged or modified release, pulsatile release patterns. The main objective in developing controlled release protein injectables is avoidance of regular invasive doses which in turn provide patient compliance, comfort as well as control over blood levels. This review article presents the outstanding contributions in field of microencapsulation as protein delivery systems and different approaches of protein delivery are described. Then discusses how these advances may be applied to resolve the challenges face the development of microcapsule for the controllable delivery of protein drugs.  相似文献   

16.
Oral administration represents the most suitable mean among different means of administering drugs because it ensures high compliance by patients. Nevertheless, the lacking aqueoussolubility, as well as, inadequate metabolic/enzymatic stability of medicines are leading obstacles to successful drug administration by oral route. Among different systems, drug administration systems based on nanotechnology have the potential to surmount the problems associated with oral drug administration. Drug delivery systems based on nanotechnology offer an alternative to deliver antihypertensive agents with enhanced therapeutic effect and bioavailability. In this study, meta-analysis was utilized in combining data relating to oral bioavailability (area under plasma concentration time curve, AUC) enhancement through nanotechnology from multiple studies. Twenty-one studies of the total 37articles included in this study were from the kingdom of Saudi Arabia and were included in a specific meta-analysis. From the analysis conducted, the overall enhancement power of the nanotechnology based formulations on drug bioavailability was found to be 7.94% (95 %CI [5.809, 10.064]). Haven utilized comprehensive and recent data of the confirmed the enhancement of bioavailability using nanotechnology which for this study was grouped into five: solid lipid nanoparticles; polymer based nanoparticles; SNEEDS/Nanoemulsion; liposomes/proliposomes and; nanostructured lipid carriers. Furthermore, the meta-analysis, provided evidence of insignificant differences between APG Bio-SNEDDS and its free drug suspension (Apeginin, APG), though with relative bioavailabiilty of 1.91. Notwithstanding most of the treatment showed a substantial relative bioavailability.  相似文献   

17.
18.
19.
《中国化学快报》2020,31(7):1729-1736
Oral administration has been widely regarded as the most convenient, quick and safe approach compared to other routes of drug delivery. However, oral absorption of drugs is often limited due to rigorous environments and complex obstacles in gastrointestinal tract. Having received considerable attention, biomacromolecules have been applied for oral drug delivery to improve the bioavailability, which could be attributed to its stability and unique bioactivities, including intestinal adhesion, opening of epithelial tight junctions, inhibiting cell efflux and regulating relative protein expression. Specifically, enhancing intestinal permeability has been regarded as a promising strategy for improving bioavailability of oral drug delivery. In this review, a series of biomacromolecules and the related mechanisms of increasing intestinal permeability for enhanced oral bioavailability are comprehensively classified and elucidated. In addition, recent advances in biomacromolecules based oral delivery and related future directions are mentioned and predicted in this review article.  相似文献   

20.
The aim of this work is the characterization of the quaternary system composed of water, triacetin (oil), ethanol (alcohol), and Tween 80 (surfactant), as its results enable the enhancement of the bioavailability of nimesulide, a poorly water soluble nonsteroidal antiinflammatory drug widely employed in the pharmaceutical field. Particular attention is devoted to the surfactant-free ternary system, as it proved able to solubilize nimesulide as well, and the absence of a surfactant is desirable in order to keep the preparation as tolerable as possible. Both bulk and interfacial properties of this system are investigated, and a mathematical model to calculate the interface composition of a three-component two-phase system is developed. This model is based on Gibbs' theory on interfaces, which considers an arbitrary mathematical dividing surface so that the two phases continue uniformly up to it, although interface regions have no sharply defined boundaries. We find that both the quaternary and the ternary systems investigated show a miscibility lacuna and that, in the surfactant-free ternary system, an increase of the ethanol weight fraction is reflected as an impoverishment of the ethanol interfacial molar fraction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号