首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have performed an experimental investigation on the electrokinetic properties of charged rod-like fluorinated latex colloids. Systematic measurements of electrophoretic mobility, dielectric constant and electric birefringence have been performed as a function of the concentration of added nonionic surfactant and salt. In the investigated range of parameters, the zeta potential is a strongly decreasing function of the concentration of nonionic surfactant, while it is basically independent from ionic strength. We have obtained the frequency dependence of dielectric constant and Kerr constant as a function of zeta-potential and ionic strength. We observe the transition from a low frequency behavior, where both the dielectric constant and the Kerr constant are enhanced by the presence of the double layer, to a high frequency behavior, where both quantities take the value expected for unchanged particles in an insulating medium. The shape of the frequency dispersion of the Kerr constant coincides with that of the dielectric constant, but the cut-off frequencies are the same only when the zeta-potential of the particles is low.  相似文献   

2.
The formation of a variety of mixed colloidal aggregates has been investigated on a ternary ionic-nonionic system constituted by (i) a double-chain cationic surfactant with a 12-carbon atom hydrophobic tail, didodecyldimethylammonium bromide (di-C(12)DMAB), (ii) a nonionic single-chain surfactant, octyl-beta-D-glucopyranoside (OBG), and (iii) water. The study has been carried out by means of conductivity, zeta-potential, transmission electron microscopy (TEM), and cryogenic transmission electron microscopy (cryo-TEM) experiments on the highly diluted, very diluted, and moderately diluted regions. The formation of mixed microaggregates, prior to the appearance of mixed vesicles, has been undoubtly confirmed by conductivity, TEM, and zeta-potential results. The concentrations at which these mixed colloidal aggregates form, i.e., the mixed critical microaggregate concentration (CAC), the mixed critical vesicle concentration (CVC), and the mixed critical micelle concentration (CMC), have been determined from conductivity data, while the zeta-potential experiments allow for the characterization of the aggregate/solution interface. The shape and size of the microaggregates and vesicles have been evaluated from TEM and cryo-TEM micrographs, respectively. All of the experimental evidence has been also analyzed in terms of the theoretical packing parameter, P.  相似文献   

3.
Mobilities of different chromatographic particles obtained from two electrokinetic methods were determined and compared. The particles were all based on porous silica, between 3 and 15 microm diameter, and were either native, or derivatized. As intermediate of chemical modification 3-mercaptopropyl-modified silica particles (TP-silica) are obtained. These particles were finally transformed into weakly basic anion exchangers with O-9-(tert-butylcarbamoyl)quinine (tBuCQN) as chiral selector. The electrophoretic mobility of the particles was determined from their migration velocity in an electric field using microelectrophoresis. Electrokinetic chromatography with a capillary column packed with the same particles was used to measure the electroosmotic flow generated. All measurements were carried out in background electrolytes of equal ionic strength (10(-2) mol/L), at pH varying between 3.5 and 9.5. From these data a rough estimation of the zeta-potential was made, taking Helmholtz-Smoluchowski conditions into consideration. With both methods the zeta-potential of the native silica particles is negative throughout, and its value increases with pH. The weakly basic tBuCQN particles have positive zeta-potentials at pH lower than about 7.5, but exhibit a negative zeta-potential above this pH, indicating the dominating effect of residual silanol groups at the silica surface. The zeta-potential for these anion-exchange particles ranged between +30 and -40 mV. The zeta-potentials derived with electrophoresis and electroosmosis agree, showing the adequacy of the approach, although many limitations must be taken into account in the treatment of the electrokinetic phenomena in such porous systems. These restrictions in interpreting mobility and zeta-potential were discussed.  相似文献   

4.
The aim of this study is to characterize vesicles obtained by the incorporation of the semifluorinated alkane, (perfluoro-n-hexyl)ethane (diblock F6H2) to a standard lipid, egg yolk phosphatidylcholine (PC). Large unilamellar vesicles (LUVs), prepared by extrusion, were characterized by fluorescence spectroscopy, zeta potential (zeta-potential) and light scattering. By using the fluorescence spectroscopy technique, the anisotropy of l,6-diphenyl-l,3,5-hexatriene (DPH) probe at different temperatures was determined. It was demonstrated that F6H2 is placed inside of the lipid bilayer and that the hydrocarbon acyl chain in the bilayers has higher viscosity in the presence of fluoroalkane. The zeta-potential of the PC-F6H2 system is negative and increases (in absolute value) from -10 to -19 mV when the temperature rises from 10 to 25 degrees C, this last value keeping practically constant with a further increase of temperature. The adsorption of K+ ions on the liposome surface was measured by zeta-potential. This adsorption originates a sudden increase of the initial zeta-potential followed by a slight decrease with K+ concentration. The application of the DLVO theory of colloidal stability showed a growing dependence of the DLVO potential with K+ concentration and consequently a increasing stability.  相似文献   

5.
傅广宛 《化学通报》2001,64(6):388-390,387
对一元弱酸(碱)溶液稀释过程中各种离子浓度递变幅度的相对非均等进行研究,推出了离子浓度递变幅度的大小次序排列及其相关概念,这一研究,有助于从整体上把握离子浓度递变规律,为正确判断离子浓度的变化结果提供了理论依据。  相似文献   

6.
Single techniques of network approach have been used to obtain the numerical solution for a boundary value problem involving the Nernst-Planck and Poisson equations system. A network model has been proposed for a particular physical situation, namely, ionic transport in charged membranes including the Donnan equilibrium relations at the membrane/solution interfaces. With this network model and using the electrical circuit simulation program PSPICE, the ionic concentration profiles as well as electric potentials and ionic fluxes have been simulated as a function of time for the ternary systems HClKCl and NaClKCl.  相似文献   

7.
In this paper a new model is described for calculating the electric potential field in a long, thin nanochannel with overlapped electric double layers. Electrolyte concentration in the nanochannel is predicted self-consistently via equilibrium between ionic solution in the wells and within the nanochannel. Differently than published models that require detailed iterative numerical solutions of coupled differential equations, the framework presented here is self-consistent and predictions are obtained solving a simple one-dimensional integral. The derivation clearly shows that the electric potential field depends on three new parameters: the ratio of ion density in the channel to ion density in the wells; the ratio of free-charge density to bulk ion density within the channel; and a modified Debye-Hückel thickness, which is the relevant scale for shielding of surface net charge. For completeness, three wall-surface boundary conditions are analyzed: specified zeta-potential; specified surface net charge density; and charge regulation. Predictions of experimentally observable quantities based on the model proposed here, such as depth-averaged electroosmotic flow and net ionic current, are significantly different than results from previous overlapped electric double layer models. In this first paper of a series of two, predictions are presented where channel depth is varied at constant well concentration. Results show that under conditions of electric double layer overlap, electroosmosis contributes only a small fraction of the net ionic current, and that most of the measurable current is due to ionic conduction in conditions of increased counterion density in the nanochannel. In the second of this two-paper series, predictions are presented where well-concentration is varied and the channel depth is held constant, and the model described here is employed to study the dependence of ion mobility on ionic strength, and compare predictions to measurements of ionic current as a function of channel depth and ion density.  相似文献   

8.
The zeta-potentials of the self-assembled surface ionic surfactants (sodium dodecyl sulfate—SDS and hexadecyltrimethyl ammonium bromide—CTAB) on graphite surfaces were determined both from streaming potential and electrophoretic mobility measurements. The adsorption of the surfactants at graphite–liquid interfaces has been studied using atomic force microscopy (AFM) soft-contact imaging which shows the formation of linear, parallel hemicylinders with headgroups oriented towards the solution. The magnitude of the zeta-potential increased with an increase in surfactant concentration, reaching a constant value at a concentration corresponding to the point of surface micelle formation as confirmed from AFM imaging. The streaming potential and electrophoretic mobility measurements showed that the zeta-potentials of SDS and CTAB surface micelles adsorbed at the graphite surface were about −75 and +70 mV, respectively, well in agreement with the values reported for bulk phase micelles in the literature.  相似文献   

9.
It was shown that the endogenous particles of the champagnes influence the lifetime, and not the maximum expansion of their evanescent foam (Food Hydrocolloids (1999) 12, 217-226). Actually, champagnes are electrolytic solutions with pH 3 and ionic strength equal to 0.02 mol/l in which bentonites, diatomites, and yeast cells are the more numerous colloids and particles present. In this context, we have investigated the electrophoretic properties of these particles to determine whether they can electrostatically interact with the foam bubbles. Results are that in model alcoholic solutions of proteins at same pH and ionic strength as the champagne, the zeta-potential was not vanishing whereas it dropped down to zero in wines. The zeta-potential of the particles does not vanish either when they are suspended in nanofiltered wines on molecular weight cut-off membrane (porosity=200-300 Da) or when the wines are basified upon addition of sodium hydroxide. This particular behaviour was tentatively assigned to the adsorption of some endogenous organic cationic ions on the particle surfaces, which screened out their electrostatic charge. The possible candidates are discussed.  相似文献   

10.
The acid-base properties of synthetically prepared and well-characterized hydroxyapatite (HAP) in contact with KNO3 solutions were investigated at 25 degrees C, through potentiometric titrations, zeta-potential measurements, and surface complex modeling. Aliquots of suspension were withdrawn every 0.5 pH unit during the titration procedure and analyzed for calcium and phosphate. It was found that, even for rapid titration experiments, a remarkable amount of H+ ions (H+dissol.) is consumed in the bulk solution in reacting with species coming from the dissolution of HAP. These H+ ions must be taken into account in the H+ mass balance, in order for true value for the point of zero charge (pzc=6.5+/-0.2) and consequently true value for the surface charge (sigma0) to be obtained. Besides the conventional potentiometric titration technique, it was found that pzc may be determined much more easily as the intersection point of the suspension titration curve and the blank one modified to include the amount of H+dissol. obtained at one ionic strength. Finally, a surface complexation model was proposed for the development of surface charge. Experimental data were satisfactorily fitted by using the value of 4.2 F m-2 for the capacitance.  相似文献   

11.
The steric mass-action (SMA) model has been reported in the literature for ion-exchange and metal-affinity interaction adsorption equilibrium of proteins. In this work, an SMA model was developed for protein adsorption equilibrium to dye-ligand affinity adsorbent, Cibacron Blue-modified Sepharose CL-6B (CB-Sepharose). Static adsorption experiments with bovine serum albumin as a model protein were carried out to determine the model parameters, that is, equilibrium constant (K), characteristic number of binding sites (n), and steric factor (sigma). It was found that the linear model parameters, K and n decreased with the increase of ionic strength, while the nonlinear parameter, sigma, increased with ionic strength and the dye-ligand concentration. Thus, expressions correlating these parameters with the dye-ligand concentration and/or ionic strength were derived. With these correlations, the SMA model gave promising results in predicting protein adsorption isotherms. Thus, it is considered that the model would be useful in the theoretical analysis of dye-ligand affinity chromatography.  相似文献   

12.
Temperature effect on the stability of bentonite colloids in water   总被引:1,自引:0,他引:1  
The stability of natural bentonite suspensions has been investigated as a function of temperature at pH 9 and ionic strength 10(-3) M. The sedimentation rate of the particles is directly related to their stability. The sedimentation kinetics was determined by examining the variation of particle concentration in solution with time. The observed kinetics for sedimentation is discussed quantitatively in terms of the potential energy between particles. The zeta-potential of the particles was measured and the DLVO theory was used to calculate attractive and repulsive potentials. Experimental observations are consistent with DLVO model predictions and show that the stability of bentonite colloids increases with temperature. Differences with other colloidal systems can be attributed to the temperature dependence of the surface charge of bentonite particles.  相似文献   

13.
A fundamental understanding of the flow characteristics of electrolyte solutions in microchannels is critical to the design and control of microfluidic devices. Experimental studies have shown that the electroviscous effect is appreciable for a dilute solution in a small microchannel. However, the experimentally observed electroviscous effects cannot be predicted by the traditional theoretical model, which involves the use of the Boltzmann distribution for the ionic concentration field. It has been found that the Boltzmann distribution is not applicable to systems with dilute electrolyte solutions in small microchannels because it violates the ion number conservation condition. A new theoretical model is developed in this paper using the Nernst equation and the ion number conservation, instead of the Boltzmann distribution, to obtain the ionic concentration field. The ionic concentration field, electrical potential field, and flow field in small microchannels are studied using the model developed here. In order to verify this model, the model-predicted dP/dx (applied pressure gradient) Re (Reynolds number) relationship is compared with the experimentally determined dP/dx approximately Re relationship. Strong agreement between the model predictions and the experimental results supports this model.  相似文献   

14.
Protein coated particles present an anomalous colloidal stability at high ionic strength when the classical theory (DLVO) predicts aggregation. This observed deviation from DLVO behaviour appears for electrolyte concentrations above some critical bulk value. As we have suggested in previous publications the existence of an additional short-range repulsive 'hydration force' due to specific hydrated cation adsorption could explain this anomalous stability. The overlap of the hydration layers when two particles approach should provoke this repulsive force. New evidence of this mechanism has been observed when electrophoretic mobilities of protein-carrying latex particles were measured at various concentrations of sodium and calcium chloride. In the latter case a sign reversal of zeta-potential was found, probably due to the specific adsorption of Ca(2+) ions on protein molecules. The adsorption increases with the medium pH. These results have been analyzed following the treatment proposed by Ohshima and co-workers for large charged colloidal particles coated with a layer of protein. This study shows an increase in the positive fixed-charge density on the protein caused by the adsorption of cations.  相似文献   

15.
Chitosan-cyclodextrin hybrid nanoparticles (NPs) were obtained by the ionic gelation process in the presence of glutathione (GSH), chosen as a model drug. NPs were characterized by means of transmission electron microscopy and zeta-potential measurements. Furthermore, a detailed X-ray photoelectron spectroscopy study was carried out in both conventional and depth-profile modes. The combination of controlled ion-erosion experiments and a scrupulous curve-fitting approach allowed for the first time the quantitative study of the GSH in-depth distribution in the NPs. NPs were proven to efficiently encapsulate GSH in their inner cores, thus showing promising perspectives as drug carriers.  相似文献   

16.
稀散金属室温离子液体BMIInCl4的性质研究   总被引:1,自引:0,他引:1  
在干燥高纯氩气氛的手套箱内,直接将摩尔比为1∶1的高纯无水InCl3与氯化1-甲基-3-丁基咪唑(BM IC l)混合,得到无色透明的离子液体BM IInCl4.在278.15-343.15 K温度范围内测定了该离子液体的密度和表面张力.利用G lasser经验方程和空隙模型讨论了BM IInCl4的性质,并与离子液体BMIAlCl4作了比较,证明了空隙模型具有一定的合理性.  相似文献   

17.
The physicochemical characterization of nanoparticles in suspension is a prerequisite for the adequate assessment of their potential biological effect. Little is known to date about the colloidal stability of TiO2 nanoparticles in cell culture medium. This study investigates the effect of particle concentration, ionic strength, pH, and the presence of fetal bovine serum (FBS) and human serum albumin (HSA) on the colloidal stability of TiO2 nanoparticles in RPMI cell culture medium, by sedimentation measurements, dynamic light scattering, and electrokinetic measurements (zeta-potential). TEM revealed that the particles were polydisperse, with diameters ranging from approximately 15 to approximately 350 nm. The agglomeration rate and sedimentation rate increased with particles' concentration. The size of the agglomerates at 100 mg/L TiO2 was significantly reduced, from 1620+/-160 to 348+/-13 and 378+/-15 nm, upon the addition of 10% (v/v) FBS and 1% (w/w) HSA, respectively. The isoelectric point of TiO2 in water was 2.9 and the measured zeta-potential in RPMI was -16+/-2 mV at pH 7.4. A slight increase in the zeta-potential of TiO2 in RPMI was observed upon the addition of FBS and HSA. The addition of FBS and HSA prevented high agglomeration, leading to a stable dispersion of TiO2 nanoparticles for at least 24 h, possibly due to steric stabilization of the particles.  相似文献   

18.
Formation of stable nanobubbles in aqueous solutions of water-soluble organic molecules is a spontaneous process. Using a combination of laser light scattering (LLS) and zeta-potential measurements, we investigated the effects of salt concentration and pH on their stability in alpha-cyclodextrin (alpha-CD) aqueous solutions. Our results reveal that the nanobubbles are unstable in solution with a higher ionic strength, just like colloidal particles in an aqueous dispersion, but become more stable in alkaline solutions. The zeta-potential measurement shows that the nanobubbles are negatively charged with an electric double layer, presumably due to adsorption of negative OH- ions at the gas/water interface. It is this double layer that plays a critical dual role in the formation of stable nanobubbles in aqueous solutions of water-soluble organic molecules, namely, it not only provides a repulsive force to prevent interbubble aggregation and coalescence but also reduces the surface tension at the gas/water interface to decrease the internal pressure inside each bubble.  相似文献   

19.
Experimental results are presented about the effects of ionic strength and pH on the mean drop-size after emulsification and on the coalescence stability of emulsions, stabilized by a globular protein beta-lactoglobulin (BLG). The mean drop-size is determined by optical microscopy, whereas the coalescence stability is characterized by centrifugation. In parallel experiments, the zeta-potential and protein adsorption on drop surface are determined. The experiments are performed at two different BLG concentrations, 0.02 and 0.1 wt%. The electrolyte concentration in the aqueous phase, C(EL), is varied between 1.5 mM and 1 M, and pH is varied between 4.0 and 7.0. The experiments show that the mean drop-size after emulsification depends slightly on C(EL), at fixed protein concentration and natural pH = 6.2. When pH is varied, the mean drop-size passes through a maximum at fixed protein and electrolyte concentrations. A monolayer protein adsorption is registered in the studied ranges of C(EL) and pH at low BLG concentration of 0.02 wt%. In contrast, a protein multilayer is formed at higher BLG concentration, 0.1 wt%, above a certain electrolyte concentration (C(EL) > 100 mM, natural pH). The experimental results for the emulsion coalescence stability are analyzed by considering the surface forces acting between the emulsion drops. The electrostatic, van der Waals, and steric interactions are taken into account to calculate the barriers in the disjoining pressure isotherm at the various experimental conditions studied. The comparison of the theoretically calculated and the experimentally determined coalescence barriers shows that three qualitatively different cases can be distinguished. (1) Electrostatically stabilized emulsions, with monolayer protein adsorption, whose stability can be described by the DLVO theory. (2) Sterically stabilized emulsions, in which the drop-drop repulsion is created mainly by overlapping protein adsorption multilayers. A simple theoretical model is shown to describe emulsion stability in these systems. (3) Sterically stabilized emulsions with a monolayer adsorption on drop surface.  相似文献   

20.
The adsorption of four cationic surfactants with different alkyl chain lengths on cellulose substrates was investigated. Cellulose fibers were used as model substrates, and primary alcohol groups of cellulose glycosyl units were oxidized into carboxylic groups to obtain substrates with different surface charges. The amount of surfactant adsorbed on the fiber surface, the fiber zeta-potential, and the amount of surfactant counterions (Cl(-)) released into solution were measured as a function of the surfactant bulk concentration, its molecular structure, the substrate surface charge, and the ionic strength. The contribution of each of these parameters to the shape of the adsorption isotherms was used to verify if surfactant adsorption and self-assembly models usually used to describe the behavior of surfactant/oxide systems can be applied, and with which limitations, to describe cationic surfactant adsorption onto oppositely charged cellulose substrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号