首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
ULTRAVIOLET SOLAR RADIATION IN THE HIGH LATITUDES OF SOUTH AMERICA   总被引:6,自引:0,他引:6  
Abstract Measurements of the UV solar irradiance are available from Ushuaia, Tierra del Fuego during the spring and summer seasons of 4 consecutive years beginning in 1989. In addition, column ozone amounts derived from satellite-based measurements exist for this location over the entire period from 1980 through 1991. Monthly mean column ozone over Ushuaia shows a general decline over the observing period, and a large day-to-day variability exists within a given month. Ozone amounts for the years 1980 through 1986 combined with a model of radiative transfer provide a climatological baseline against which to interpret the more recent ground-based irradiance data. We focus on monthly mean noontime irradiances integrated over 5 nm wide spectral bands near 305 nm and 340 nm, respectively. Measurements in the 340 nm band show that cloudiness has a large influence on both the absolute monthly mean irradiances and their interannual variability. For example, during December the 340 nm band irradiance varied from approximately 50% of the clear-sky value in 1992 to 65% in 1991. When the influence of cloudiness is removed, most of the months show irradiances in the 305 nm band that are larger than predicted from the climatological ozone amounts. The largest percentage enhancement occurred in October 1991 when the irradiance exceeded the baseline by 56%. The largest absolute irradiances occur in December, where the measurements range from 5.8% below the baseline in 1991 to 31% above in 1990.  相似文献   

2.
Polybrominated diphenyl ethers (PBDEs) are persistent organic pollutants that can arrive to water bodies from their use as flame retardants in a wide range of applications, such as electric and electronic devices or textiles. In this study, the photodegradation of PBDEs in water samples when applying UV-LED radiation was studied. Irradiation was applied at three different wavelengths (255 nm, 265 nm and 285 nm) and different exposure times. The best degradation conditions for spiked purified water samples were at 285 nm and 240 min, resulting in degradations between 67% and 86%. The optimized methodology was applied to real water samples from different sources: river, marine, wastewater (effluent and influent of treatment plants) and greywater samples. Real water samples were spiked and exposed to 4 hours of irradiation at 285 nm. Successful photodegradation of PBDEs ranging from 51% to 97% was achieved for all PBDE congeners in the different water samples with the exception of the marine one, in which only a 31% of degradation was achieved.  相似文献   

3.
Abstract —This research was undertaken to demonstrate that the protein-bound chromophores in aged human lens can act as sensitizers for protein damage by UVA light. The water-insoluble (WI) proteins from pooled human and bovine lenses were solubilized by sonication in water and illuminated with UV light similar in output to that transmitted by the cornea. Analysis of the irradiated proteins showed a linear decrease in sulfiydryl groups with a 30% loss after 2 h. No loss was seen when native a-crystallin was irradiated under the same conditions. A 25% loss of histidine residues was also observed with the human lens WI fraction, and sodium dodecyl sulfate polyacrylamide gels indicated considerable protein cross-linking. Similar photodamage was seen with a WI fraction from old bovine lenses. While the data show the presence of UVA sensitizers, some histidine destruction and protein cross-linking were also obtained with a-crystallin and with lysozyme, which argue that part of the histidine loss in the human WISS was likely due to tryptophan acting as a sensitizer.
A preparation of human WI proteins was irradiated with a total of 200 J/cm2 of absorbed light at 10 nm intervals from 290 to 400 nm. Photodamage of cysteine SH groups (35%) and methionine (28Y0) was maximum at 330 nm and diminished linearly at longer wavelengths. The major loss of tryptophan (80%) occurred at 290 nm, but destruction was observed throughout the UVA range. Tyrosine was 35% destroyed at 290 nm but decreased sharply to only 50 at 330 nm. A constant loss of histidine (20%) was seen at all wavelengths from 290 to 360 nm, with some loss (7–8%) even at 400 nm. These action spectra show that the human lens WI fraction contains a collection of protein-bound UVA sensitizers that can cause protein photodamage similar to that seen in cataractous lenses.  相似文献   

4.
Excitation wavelength (lambdaex) dependence of solvation dynamics of coumarin 480 (C480) in the micellar core of a water soluble triblock copolymer, PEO20-PPO70-PEO20 (Pluronic P123), is studied by femtosecond and picosecond time resolved emission spectroscopies. In the P123 micelle, the width of the emission spectrum of C480 is found to be much larger than that in bulk water. This suggests that the P123 micelle is more heterogeneous than bulk water. The steady state emission maximum of C480 in P123 micelle shows a significant red edge excitation shift by 25 nm from 453 nm at lambdaex=345 nm to 478 nm at lambdaex=435 nm. The solvation dynamics in the interior of the triblock copolymer micelle is found to depend strongly on the excitation wavelength. The excitation wavelength dependence is ascribed to a wide distribution of locations of C480 molecules in the P123 micelle with two extreme environments-a bulklike peripheral region with very fast solvent response and a very slow core region. With increase in lambdaex, contribution of the bulklike region having an ultrafast component (< or =2 ps) increases from 7% at lambdaex=375 nm to 78% at lambda(ex)=425 nm while the contribution of the ultraslow component (4500 ps) decreases from 79% to 17%.  相似文献   

5.
Solvation dynamics of coumarin 480 (C480) in the secondary aggregate of a bile salt (sodium deoxycholate, NaDC) is studied using femtosecond up-conversion. The secondary aggregate resembles a long (approximately 40 A) hollow cylinder with a central water-filled tunnel. Different regions of the aggregate are probed by variation of the excitation wavelength (lambdaex) from 375 to 435 nm. The emission maximum of C480 displays an 8 nm red shift as the lambdaex increases from 345 to 435 nm. The 8 nm red edge excitation shift (REES) suggests that the probe (C480) is distributed over regions of varied polarity. Excitation at a short wavelength (375 nm) preferentially selects the probe molecule in the buried locations and exhibits slow dynamics with a major (84%) slow component (3500 ps) and a small (16%) contribution of the ultrafast component (2.5 ps). Excitation at lambdaex=435 nm (red end) corresponds to the exposed sites where solvation dynamics is very fast with a major (73%) ultrafast component (相似文献   

6.
The MgS-FeS system has a peritectic phase diagram with limited terminal solid solutions. The maximal solubility in FeS is reached at the peritectic point and is 2 mol % MgS at 1470 K. The extent of the MgS-based solid solution is 25 mol % MgS at 1470 K, 42 mol % MgS at 1170 K, and 65 mol % MgS at 770 K. The unit cell parameter of the cubic MgS phase (a NaCl-type structure) varies from 0.5196 nm (MgS) to 0.5164 nm (65 mol % MgS, 770 K) and 0.5127 nm (42 mol % MgS, 1170 K). The microhardness varies from 2600 to 3040 MPa. The iron ions in the solid solution are in a low-spin state.  相似文献   

7.
The mean size of the latex particles formed in emulsion polymerization of methyl methacrylate under definite conditions (water: monomer volume ratio 15: 1, 80°C, potassium persulfate concentration 0.07 wt %) decreases from 200 to 9–10 nm as the concentration of an ionic surfactant (anionic Disponil AES 60, SDS, cationic C19H42BrN) is increased from 0.0 to 1.0 wt %. The nonionic surfactants studied influence the size of the latex particles formed differently: with ALM-10, the particle size decreases from 200 to 150–190 nm, whereas with ALM-7 and ALM-2 it increases from 200 to 320 nm as the surfactant concentration is increased from 0.0 to 1.0 wt %. An increase in the concentration of F127 amphiphilic ternary block copolymer from 0.0 to 1.0 wt % leads to a monotonic decrease in the size of the poly(methyl methacrylate) latex particles formed from 200 to 53 nm.  相似文献   

8.
We have studied the gas-phase photolysis of 4-oxo-2-pentenal by laser photolysis combined with cavity ring-down spectroscopy. Absorption cross sections of cis- and trans-4-oxo-2-pentenal have been measured in the 190-460 nm region. The product channel following 193, 248, 308, and 351 nm photolysis of 4-oxo-2-pentenal was investigated. The HCO radical is a photodissociation product of 4-oxo-2-pentenal only at 193 and 248 nm. The HCO quantum yields from the photolysis of a mainly trans-4-oxo-2-pentenal sample are 0.13 +/- 0.02 and 0.014 +/- 0.003 at 193 and 248 nm, where errors quoted (1sigma) represent experimental scatter. The HCO quantum yields from the photolysis of a mainly cis-4-oxo-2-pentenal sample are 0.078 +/- 0.012 and 0.018 +/- 0.007 at 193 and 248 nm, where errors quoted (1sigma) represent experimental scatter. The end-products from 193, 248, 308, and 351 nm photolysis of 4-oxo-2-pentenal (the 4-oxo-2-pentenal sample had a tran/cis ratio of 1.062:1) have been determined by FTIR. Ethane, methyl vinyl ketone, and 5-methyl-3H-furan-2-one have been observed, suggesting the occurrence of 4-oxo-2-pentenal photolysis pathways such as CH(3)COCH=CHCHO + hnu --> CH(3) + COCH=CHCHO, CH(3)COCH=CHCHO + hnu --> CH(3)COCH=CH(2) + CO, and CH(3)COCH=CHCHO + hnu --> 5-methyl-3H-furan-2-one. The estimated yields for the CH(3) + COCH=CHCHO channel are about 25%, 33%, 31%, and 23% at 193, 248, 308, and 351 nm, respectively. The absolute uncertainties in the determination of CH(3) + COCH=CHCHO yields are within 55% at 193 nm, and 65% at 248, 308, and 351 nm. The estimated yields for the CH(3)COCH=CH(2) + CO channel are about 25%, 23%, 40%, and 33% at 193, 248, 308, and 351 nm, respectively. The absolute uncertainties in the determination of CH(3)COCH=CH(2) yields are within 80% at 193 and 248 nm and 65% at 308 and 351 nm. The estimated yields for the 5-methyl-3H-furan-2-one channel are about 1.2%, 2.1%, 5.3%, and 5.5% at 193, 248, 308, and 351 nm, respectively. The absolute uncertainties in the determination of 5-methyl-3H-furan-2-one yields are about 23%, 86%, 40%, and 46% at 193, 248, 308, and 351 nm. Results from our investigation indicate that photolysis is a dominant removal pathway for 4-oxo-2-pentenal degradation in the atmosphere.  相似文献   

9.
Sedimentation field flow fractionation was used to obtain purified fractions from a polydispersed zirconia colloidal suspension in the potential purpose of optical material hybrid coating. The zirconia particle size ranged from 50/70 nm to 1000 nm. It exhibited a log-Gaussian particle size distribution (in mass or volume) and a 115% polydispersity index (P.I.). Time dependent eluted fractions of the original zirconia colloidal suspension were collected. The particle size distribution of each fraction was determined with scanning electron microscopy and Coulter sub-micron particle sizer (CSPS). These orthogonal techniques generated similar data. From fraction average elution times and granulometry measurements, it was shown that zirconia colloids are eluted according to the Brownian elution mode. The four collected fractions have a Gaussian like distribution and respective average size and polydispersity index of 153 nm (P.I. = 34.7%); 188 nm (P.I. = 27.9%); 228 nm (P.I. = 22.6%), and 276 nm (P.I. = 22.3%). These data demonstrate the strong size selectivity of SdFFF operated with programmed field of exponential profile for sorting particles in the sub-micron range. Using this technique, the analytical production of zirconia of given average size and reduced polydispersity is possible.  相似文献   

10.
Photodissociation of indole at 193 and 248 nm under collision-free conditions has been studied in separate experiments using multimass ion imaging techniques. H atom elimination was found to be the only dissociation channel at both wavelengths. The photofragment translational energy distribution obtained at 193 nm contains a fast and a slow component. Fifty-four percent of indole following the 193 nm photoexcitation dissociate from electronically excited state, resulting in the fast component. The rest of 46% indole dissociate through the ground electronic state, giving rise to the slow component. A dissociation rate of 6 x 10(5) s(-1), corresponding to the dissociation from the ground electronic state, was determined. Similar two-component translational energy distribution was observed at 248 nm. However, more than 80% of indole dissociate from electronically excited state after the absorption of 248 nm photons. A comparison with the potential energy surfaces from the ab initio calculation has been made.  相似文献   

11.
ICP-AES法测定1J22软磁材料中的锰、硅、镍、铜、钒   总被引:1,自引:0,他引:1  
用电感耦合等离子体发射光谱仪(ICP)测定软磁材料1J22中的锰、硅、镍、铜、钒.通过试验选择了适宜的测试条件,针对1J22软磁材料中常见元素对锰、硅、镍、铜、钒谱线的光谱干扰选择了合适的分析谱线,并进行了精密度和准确度试验.选用Mn 257. 610 nm、Si 251. 611 nm、Ni 351. 505 nm、Cu 224. 700 nm、V 292. 402 nm为分析线时.合成溶液的回收率为92. 0%~114. O%,RSD为0. 33%~7. 73%(n=6).本方法适合1J22软磁材料中锰、硅、镍、铜、钒元素的测定.  相似文献   

12.
A probability-based multivariate statistical algorithm combining partial least-squares (PLS) and logistic regression was developed to identify the development stages of oral cancer through analysis of autofluorescence spectra of oral tissues. Tissues were taken from a 7,12-dimethylbenz[a]anthracene-induced hamster buccal pouch carcinogenesis model. Analyses were conducted at various excitation wavelengths, ranging from 280 nm to 400 nm in 20 nm increments, to assess classification performance at different excitations. For each excitation the PLS analysis and logistic regression were combined, on the basis of cross validation, to calculate the posterior probabilities of samples belonging to four stages of cancer development: normal tissues, hyperplasia, dysplasia and early cancers and frankly invasive cancers. Results showed that the 320 nm excitation wavelength optimally classified the cancer development stages: the accuracy rates for identifying samples at that excitation were 91.7%, 83.3%, 66.7% and 83.3% for the four respective stages. The average accuracy rate was 81.3%. These results suggest that the algorithm described in this study might be useful for the detection of human oral cancers.  相似文献   

13.
Abstract— Emission spectra of unbound reduced nicotinamide formycin dinucleotide (NFDH) revealed the presence of two major conformations of the coenzyme in solution: when examined at excitation wavelengths at or below 307 nm, emission spectra contained peaks at 343 and 447 nm; when excited above 307 nm, an additional maximum appeared at 355 nm and the peak of the dihydronicotinamide emission band shifted from 447 to 440 nm. Both conformers are probably detected at the longer wavelengths since the emission peak at 343 nm was retained. Identical changes occurred in the emission spectra of NFD+, however, the dihydronicotinamide emission between 440 and 447 nm was absent. Several mechanisms which may account for the presence of these conformers have been considered. The choice has been narrowed to conformations with ring-ring interactions of the formycin and nicotinamide moieties resulting from (a) formycin tautomerization or (b) heterogeneity of glycosidic bond angles in the structures. The efficiency of intramolecular energy transfer from the formycin to the dihydronicotinamide moiety for free NFDH in aqueous solution was 84% and declined slightly (to 77%) when measured in 1,2-propanediol. NFD+ has coenzyme activity for NAD-specific isocitrate dehydrogenase (Plaut et al. , 1979). The emission spectrum of enzyme bound NFDH was altered markedly in the presence of manganese isocitrate; emission intensity at 343 and 355 nm decreased while the emission from the dihydronicotinamide ring at 433 nm increased, when NFDH was excited at 310 nm. This shift in emission intensity was indicative of an increase in energy transfer within the NFDH molecule, caused by a change in coenzyme conformation upon binding to the enzyme-substrate complex.  相似文献   

14.
We assessed the contribution of UV-induced violet-blue-green leaf fluorescence to photosynthesis in Poa annua, Sorghum halepense and Nerium oleander by measuring UV-induced fluorescence spectra (280-380 nm excitation, 400-550 nm emission) from leaf surfaces and determining the monochromatic UV action spectra for leaf photosynthetic O2-evolution. Peak fluorescence emission wavelengths from leaf surfaces ranged from violet (408 nm) to blue (448 nm), while excitation peaks for these maxima ranged from 333 to 344 nm. Action spectra were developed by supplementing monochromatic radiation from 280 to 440 nm, in 20 nm increments, to a visible nonsaturating background of 500 mumol m-2 s-1 photosynthetically active radiation and measuring photosynthetic O2-evolution rates. Photosynthetic rates tended to be higher with the 340 nm supplement than with higher or lower wavelength UV supplements. Comparing photosynthetic rates with the 340 nm supplement to those with the 400 nm supplement, the percentage enhancement in photosynthetic rates at 340 nm ranged from 7.8 to 9.8%. We suspect that 340 nm UV improves photosynthetic rates via fluorescence that provides violet-blue-green photons for photosynthetic energy conversion because (1) the peak excitation wavelength (340 nm) for violet-blue-green fluorescence from leaves was also the most effective UV wavelength at enhancing photosynthetic rates, and (2) the magnitude of photosynthetic enhancements attributable to supplemental 340 nm UV was well correlated (R2 = 0.90) with the apparent intensity of 340 nm UV-induced violet-blue-green fluorescence emission from leaves.  相似文献   

15.
Narrowband organic light-emitting diodes (OLEDs) are receiving significant attention and have demonstrated impressive performance in blue and green OLEDs. However, developing high-performance narrowband red OLEDs remains a highly desired yet challenging task. Herein, we have developed narrowband red fluorescent emitters by utilizing a boron-dipyrromethene (BODIPY) skeleton in combination with a methyl-shield strategy. These emitters exhibit small full-width at half-maxima (FWHM) ranging from 21 nm (0.068 eV) to 25 nm (0.081 eV) and high photoluminescence quantum yields (ΦPL) ranging from 88.5 % to 99.0 % in toluene solution. Using BODIPY-based luminescent materials as emitters, high-performance narrowband red OLEDs have been assembled with external quantum efficiency as high as 18.3 % at 623 nm and 21.1 % at 604 nm. This work represents, to our knowledge, the first successful case of achieving NTSC pure-red OLEDs with the Commission Internationale de l’Éclairage (CIE) coordinates of [0.67, 0.33] based on conventional fluorescent emitters.  相似文献   

16.
Sodium dodecyl sulfate (SDS) is widely utilized in biomolecules separation, but high residue SDS in biomolecules samples interfere mass analysis. Ethidium bromide (EtdBr) interacts with SDS, and the formation of EtdBr‐SDS complex at low SDS concentration (0–0.1 %) results a large red shift of the n→π* transition of EtdBr from 480 nm to 530 nm. The ion pairs become non‐emissive and cause low emission intensity. While the concentration of SDS is above 0.1 %, SDS starts aggregating to form micelle. Micelle formation destabilizes the complex and the absorption maxima shift back to 513 nm while emission intensity increases. Based on the change of absorption and emission of EtdBr, a SDS concentration assay was developed. If absorption maximizes at 480 nm, the concentration of SDS of the sample is below 0.005 %. If absorption maximum is at longer wavelength than 480 nm, a second parameter, the ratio of absorbance at 513 nm and 550 nm is introduced. If the ratio is smaller than 1.5, the concentration of SDS is between 0.01–0.1 %. If the ratio is larger than 1.5, the concentration of SDS is above 0.15 %. Despite the suitable range is small, the lower limit is around the range of no mass interference.  相似文献   

17.
高效液相色谱法测定非洲刺李提取物中阿魏酸二十二烷酯   总被引:2,自引:0,他引:2  
游勇基  程广强 《色谱》1997,15(3):259-260
建立了非洲刺李提取物中阿魏酸二十二烷酯含量测定方法。采用SpherisorbC18柱,以甲醇为流动相,检测波长326nm,柱温40℃,线性范围10~100mg/L(r=0.9995)。平均回收率98.4%,RSD为1.98%。方法准确可靠,重现性好。  相似文献   

18.
Thin films of nanostructures alter the electrical properties of mineral surfaces and thereby affect reactions with charged species such as metal ions and biological cells. In this study, electric-force microscopy is used to probe the electrical properties of a heterogeneous layout of manganese oxide nanostructures grown as a film on a MnCO3 substrate. The role of water sorption is examined by carrying out experiments for increasing relative humidity (RH). Electric-force images collected with a negative dc tip bias show that the apparent heights of the nanostructures decrease from +3.4 nm at 16% RH to +0.7 nm at 33% RH to -5.6 nm at 74% RH, although the topographic height is 2.3 nm regardless of RH. The apparent heights for a positive dc bias also decrease with increasing RH from -3.5 nm at 16% RH to -8.9 nm at 74%. The explanation for these trends is that the dominant electric-force transitions with increasing RH from an electrostatic force attributable to surface potential to a polarization force arising from hydrated, mobile surface ions including Mn2+ and CO3(2-). The positive-to-negative trend in apparent heights implies that either the density or the intrinsic mobility (or both) of mobile ions over the substrate exceeds that over the nanostructures, implying increased water sorption over the former compared to the latter. Ridges around the perimeter of the nanostructures also develop above 40% RH for images collected using a negative dc tip bias. A tip-induced gradient of net positive charge near the nanostructure edges, which implies the nonequivalence of cations and anions there, explain this observation. The findings of this study show that thin films of nanostructures on mineral surfaces have complex but measurable RH-dependent electrical properties.  相似文献   

19.
Abstract Cultured fibroblasts derived from normal human skin have been irradiated at a series of monochromatic wavelengths throughout the ultraviolet region and exposed to the specific α polymerase inhibitor, aphidicolin (1 μg/m l , 2 days) prior to assay for colony forming ability. Repair of 75-80% of the lethal damage induced by UVC (254 nm) or UVB (302 nm, 313 nm) radiation is inhibited by aphidicolin suggesting that such damage is repaired by a common α polymerase dependent pathway. Exposure to aphidicolin after irradiation at longer UVA (334 nm, 365 nm) or a visible (405 nm) wavelength leads to slight protection from inactivation implying that the processing of damage induced in this wavelength region is quite distinct from that occurring at the shorter wavelengths and does not involve α polymerase.  相似文献   

20.
A new photoresponsive D-π-A dye, mPS, has been designed and synthesized.Compared to the parent dye PS, IPCE values in the region from 400 nm to 560 nm was greatly improved upon changing the attaching group from the p- position to the o- position of the π-conjugation bridge. A solar cell based on mPS generated a remarkably high overall yield η of 5.4% under irradiation of 80.0 mW cm^-2 white light from a Xe lamp, Compared with PS, the overall yield η increased by 64%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号