首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
The reactions of bidentate diimine ligands (L2) with binuclear [Ru(L1)(CO)Cl2]2 complexes [L1 not equal to L2 = 2,2'-bipyridine (bpy), 4,4'-dimethyl-2,2'-bipyridine (4,4'-Me2bpy), 5,5'-dimethyl-2,2'-bipyridine (5,5'-Me2bpy), 1,10-phenanthroline (phen), 4,7-dimethyl-1,10-phenanthroline (4,7-Me2phen), 5,6-dimethyl-1,10-phenanthroline (5,6-Me2phen), di(2-pyridyl)ketone (dpk), di(2-pyridyl)amine (dpa)] result in cleavage of the dichloride bridge and the formation of cationic [Ru(L1)(L2)(CO)Cl]+ complexes. In addition to spectroscopic characterization, the structures of the [Ru(bpy)(phen)(CO)Cl]+, [Ru(4,4'-Me2bpy)(5,6-Me2phen)(CO)Cl]+ (as two polymorphs), [Ru(4,4'-Me2bpy)(4,7-Me2phen)(CO)Cl]+, [Ru(bpy)(dpa)(CO)Cl]+, [Ru(5,5'-Me2bpy)(dpa)(CO)Cl]+, [Ru(bpy)(dpk)(CO)Cl]+, and [Ru(4,4'-Me2bpy)(dpk)(CO)Cl]+ cations were confirmed by single crystal X-ray diffraction studies. In each case, the structurally characterized complex had the carbonyl ligand trans to a nitrogen from the incoming diimine ligand, these complexes corresponding to the main isomers isolated from the reaction mixtures. The synthesis of [Ru(4,4'-Me2bpy)(5,6-Me2bpy)(CO)(NO3)]+ from [Ru(4,4'-Me2bpy)(5,6-Me2bpy)(CO)Cl]+ and AgNO3 demonstrates that exchange of the chloro ligand can be achieved.  相似文献   

2.
A series of Pd and Pt chloride complexes with pyridine (py), 2,2'-bipyridine (bpy) and 1,10-phenanthroline (phen), of general formulae trans-/cis-[M(py)2Cl2], [M(py)4]Cl2, trans-/cis-[M(py)2Cl4], [M(bpy)Cl2], [M(bpy)Cl4], [M(phen)Cl2], [M(phen)Cl4], where M = Pd, Pt, was studied by 1H, 195Pt, and 15N NMR. The 90-140 ppm low-frequency 15N coordination shifts are discussed in terms of such structural features of the complexes as the type of platinide metal, oxidation state, coordination sphere geometry and the type of ligand. The results of quantum-chemical NMR calculations were compared with the experimental 15N coordination shifts, well reproducing their magnitude and correlation with the molecular structure.  相似文献   

3.
Fan Y  Zhang LY  Dai FR  Shi LX  Chen ZN 《Inorganic chemistry》2008,47(7):2811-2819
When 3-ethynyl-1,10-phenanthroline (HCCphen) or 3,8-diethynyl-1,10-phenanthroline (HCCphenCCH) is utilized as a bifunctional bridging ligand via stepwise molecular fabrication, a series of Pt-Ru and Pt-Re heteronuclear complexes composed of both platinum(II) terpyridyl acetylide chromophores and a Ru(phen)(bpy)2/Re(phen)(CO)3Cl subunit were prepared by complexation of one or two Pt((t)Bu3tpy)(2+) units to the mononuclear Ru(II) or Re(I) precursor through platinum acetylide sigma coordination. These Pt-Ru and Pt-Re complexes exhibit intense low-energy absorptions originating from both Pt- and Ru (Re)-based metal-to-ligand charge-transfer (MLCT) states in the near-visible region. They are strongly luminescent in both solid states and fluid solutions with a submicrosecond range of lifetimes and 0.27-6.58% of quantum yields in degassed acetonitrile. For the Pt-Ru heteronuclear complexes, effective intercomponent Pt --> Ru energy transfer takes place from the platinum(II) terpyridyl acetylide chromophores to the ruthenium(II) tris(diimine)-based emitters. In contrast, dual emission from both Pt- and Re-based (3)MLCT excited states occurs because of less efficient intercomponent Pt --> Re energy transfer in the Pt-Re heteronuclear complexes.  相似文献   

4.
Platinum phenanthroline complexes inhibit amyloid-β (Aβ) aggregation and reduce Aβ-caused neurotoxicity [Proc. Natl. Acad. Sci., 2008, 105, 6813-6818]. In this study, we investigated the interactions of Aβ(1-16) with [PtCl(2)(phen)] (phen=1,10-phenanthroline) using HPLC, ESI-MS, and NMR spectroscopy , and characterized the identity of products using tandem mass spectrometry. Results indicated that the phenanthroline ligand could induce noncovalent interactions between Aβ peptide and platinum complexes, leading to rapid Aβ platination. Multiple products were generated in the reaction, in which His6/His14 chelation was preferentially formed. Coordination of Asp7, His13, and Lys16 was also detected in other products. The majority of products were monoplatinated adducts with binding of the {Pt(phen)} scaffold, which impeded intermolecular interactions between Aβ peptides. Moreover, noncovalent interactions were confirmed by the interaction between Aβ peptide and [Pt(phen)(2)]Cl(2). The synergistic roles of the phen ligand and platinum(II) atom in the inhibition of Aβ aggregation are discussed.  相似文献   

5.
The oxidation state of the chromium center in the following compounds has been probed using a combination of chromium K-edge X-ray absorption spectroscopy and density functional theory: [Cr(phen)(3)][PF(6)](2) (1), [Cr(phen)(3)][PF(6)](3) (2), [CrCl(2)((t)bpy)(2)] (3), [CrCl(2)(bpy)(2)]Cl(0.38)[PF(6)](0.62) (4), [Cr(TPP)(py)(2)] (5), [Cr((t)BuNC)(6)][PF(6)](2) (6), [CrCl(2)(dmpe)(2)] (7), and [Cr(Cp)(2)] (8), where phen is 1,10-phenanthroline, (t)bpy is 4,4'-di-tert-butyl-2,2'-bipyridine, and TPP(2-) is doubly deprotonated 5,10,15,20-tetraphenylporphyrin. The X-ray crystal structures of complexes 1, [Cr(phen)(3)][OTf](2) (1'), and 3 are reported. The X-ray absorption and computational data reveal that complexes 1-5 all contain a central Cr(III) ion (S(Cr) = (3)/(2)), whereas complexes 6-8 contain a central low-spin (S = 1) Cr(II) ion. Therefore, the electronic structures of 1-8 are best described as [Cr(III)(phen(?))(phen(0))(2)][PF(6)](2), [Cr(III)(phen(0))(3)][PF(6)](3), [Cr(III)Cl(2)((t)bpy(?))((t)bpy(0))], [Cr(III)Cl(2)(bpy(0))(2)]Cl(0.38)[PF(6)](0.62), [Cr(III)(TPP(3?-))(py)(2)], [Cr(II)((t)BuNC)(6)][PF(6)](2), [Cr(II)Cl(2)(dmpe)(2)], and [Cr(II)(Cp)(2)], respectively, where (L(0)) and (L(?))(-) (L = phen, (t)bpy, or bpy) are the diamagnetic neutral and one-electron-reduced radical monoanionic forms of L, and TPP(3?-) is the one-electron-reduced doublet form of diamagnetic TPP(2-). Following our previous results that have shown [Cr((t)bpy)(3)](2+) and [Cr(tpy)(2)](2+) (tpy = 2,2':6',2"-terpyridine) to contain a central Cr(III) ion, the current results further refine the scope of compounds that may be described as low-spin Cr(II) and reveal that this is a very rare oxidation state accessible only with ligands in the strong-field extreme of the spectrochemical series.  相似文献   

6.
Kishi S  Kato M 《Inorganic chemistry》2003,42(26):8728-8734
Three linkage isomers, bis(thiocyanato-S)(2,2'-bipyridine)platinum(II) ([Pt(SCN)(2)(bpy)]), (thiocyanato-S)(thiocyanato-N)(2,2'-bipyridine)platinum(II) ([Pt(SCN)(NCS)(bpy)]), and bis(thiocyanato-N)(2,2'-bipyridine)platinum(II) ([Pt(NCS)(2)(bpy)]) were isolated, and their structures were elucidated. The crystal data are as follows: for [Pt(SCN)(2)(bpy)], C(12)H(8)N(4)S(2)Pt, orthorhombic, P2(1)2(1)2(1) (No. 19), a = 12.929(9) A, b = 18.67(1) A, c = 5.497(4) A, Z = 4; for [Pt(SCN)(NCS)(bpy)], C(12)H(8)N(4)S(2)Pt, monoclinic, P2(1)/n (No. 14), a = 10.909(7) A, b = 7.622(4) A, c = 16.02(1) A, beta = 102.323(7) degrees, Z = 4; for [Pt(NCS)(2)(bpy)], C(12)H(8)N(4)S(2)Pt, orthorhombic, Pbcm (No. 57), a = 10.3233(8) A, b = 19.973(2) A, c = 6.4540(5) A, Z = 4. The stacking structures of the isomers were found to be different depending on the coordination geometries based on the N- and S-coordination of the thiocyanato ligands, which control the color and luminescence of the crystals sensitively. The isomerization behaviors of the complex have been investigated both in solution and in the solid state. In solution, stepwise thermal isomerization from [Pt(SCN)(2)(bpy)] to [Pt(NCS)(2)(bpy)] by way of [Pt(SCN)(NCS)(bpy)] was observed using (1)H NMR spectroscopy. Reverse isomerization, from [Pt(NCS)(2)(bpy)] to [Pt(SCN)(NCS)(bpy)] and [Pt(SCN)(2)(bpy)], occurred when irradiated with near ultraviolet (UV) light. In contrast, the [Pt(SCN)(2)(bpy)] yellow crystals exhibited thermal isomerization directly to red crystals of [Pt(NCS)(2)(bpy)], as detected by changes in the emission spectrum, which indicates that the flip of two SCN(-) ligands correlatively occurred in the solid state. The yellow crystals of [Pt(SCN)(NCS)(bpy)] were also converted to the thermodynamically stable red crystal of [Pt(NCS)(2)(bpy)] though the reverse isomerization has never been observed to occur by photoirradiation in the solid state.  相似文献   

7.
The n-alkyl halides, RX, were oxidatively added to the platina(II)cyclopentane complexes [Pt[(CH2)4](NN)], in which NN = bpy (2,2'-bipyridyl) or phen (1,10-phenanthroline), to give the platinum(IV) complexes [PtRX[(CH2)4](NN)], R = Et and X = Br or I; R = nBu and X = I, 1-3. The same reactions with the analogous dimethyl complex [PtMe2(bpy)] gave the expected platinum(IV) complexes [PtRXMe2(bpy)], R = Et or nPr and X = Br or I; R = nBu and X = I, 4-8. Kinetics of the reactions in benzene and acetone was studied using UV-vis spectrophotometery and a common S(N)2 mechanism was suggested for each case. The platina(ii)cyclopentane complexes reacted faster than the corresponding dimethyl analogs by a factor of 2-3. This is described as being due to a lower positive charge, calculated by density functional theory (DFT), on the platinum atom of [Pt[(CH)2)4](bpy)] compared with that on the platinum atom of the dimethyl analog [PtMe2(bpy)]. The values of DeltaDeltaS(double dagger) = DeltaS(double dagger)(acetone) - DeltaS(double dagger)(benzene) were found to be either positive or negative in different reactions and this is related to the solvation of the corresponding alkyl halide. It is suggested that in these reactions of RX reagents, for a given X, the electronic effects of the R group are mainly responsible for the change in the rates of the reactions and the bulkiness of the group is far less important.  相似文献   

8.
A series of platinum(II) complexes with the formulas Pt(diimine)(pip(2)NCNH(2))(L)(2+) [pip(2)NCNH(2)(+) = 2,6-bis(piperidiniummethyl)phenyl cation; L = Cl, Br, I, NCS, OCN, and NO(2); diimine = 1,10-phenanthroline (phen), 5-nitro-1,10-phenanthroline (NO(2)phen), and 5,5'-ditrifluoromethyl-2,2'-bipyridine (dtfmbpy)] were prepared by the treatment of Pt(pip(2)NCN)Cl with a silver(I) salt followed by the addition of the diimine and halide/pseudohalide under acidic conditions. Crystallographic data as well as (1)H NMR spectra establish that the metal center is bonded to a bidentate phenanthroline and a monodentate halide/pseudohalide. The pip(2)NCNH(2)(+) ligand with protonated piperidyl groups is monodentate and bonded to the platinum through the phenyl ring. Structural and spectroscopic data indicate that the halide/pseudohalide group (L(-)) and the metal center in Pt(phen)(pip(2)NCNH(2))(L)(2+) behave as Br?nsted bases, forming intramolecular NH···L/NH···Pt interactions involving the piperidinium groups. A close examination of the 10 structures reported here reveals linear correlations between N-H···Pt/L angles and H···Pt/L distances. In most cases, the N-H bond is directed toward the Pt-L bond, thereby giving the appearance that the proton bridges the Pt and L groups. In contrast to observations for Pt(tpy)(pip(2)NCN)(+) (tpy = 2,2';6',2"-terpyridine), the electrochemical oxidation of deprotonated adducts, Pt(diimine)(L)(pip(2)NCN), is chemically and electrochemically irreversible.  相似文献   

9.
The spectroscopic properties and crystal structures of a series of platinum(II) complexes bearing functionalized sigma-alkynyl groups, namely [(tBu(2)bpy)Pt(C triple bond CAr)(2)] (tBu(2)bpy = 4,4'-bis-tert-butyl-2,2'-bipyridine, Ar = 4-pyridyl, 1; 3-pyridyl, 2; 2-pyridyl, 3; 4-ethynylpyridyl, 4; 2-thienyl, 5; pentafluorophenyl, 6) have been studied. Solid-state emissions of 1 and 6 are dependent on their crystallinity. Reversible and selective vapoluminescence was observed for 1 and 6 in the presence of chlorocarbon vapors. For solid 1, dramatic enhancement of green luminescence is observed upon sorption of CH(2)Cl(2) or CHCl(3) vapor. The excimeric orange emission for solid 6 is switched to monomeric green emission upon exposure to CH(2)Cl(2) vapor. The luminescent responses of a thin film of 1 towards various organic vapors have also been examined. In the crystallographically determined structure of 1.CH(2)Cl(2), the bis(acetylide) moiety acts as the receptor berth for a CH(2)Cl(2) molecule through concerted C-H.pi(C triple bond C) interactions, while Cl.Cl interactions connect the CH(2)Cl(2) molecules into infinite linear chains. The observed crystal lattices are arranged into scaffolds of varying porosity by weak C-H...N(py) (1.CH(2)Cl(2), 1.CH(3)CN, 4.DMF) and C-H...F-C (6, 6.CH(3)CN) interactions. The correlation between the crystal structures of 1.CH(2)Cl(2), 1.CH(3)CN, 2, 4.DMF, 5, 6, and 6.CH(3)CN and their vapoluminescence suggests that weak nonconventional hydrogen-bonding interactions preside over the reversible sensing and signalling processes.  相似文献   

10.
Gao E  Liu L  Zhu M  Huang Y  Guan F  Gao X  Zhang M  Wang L  Zhang W  Sun Y 《Inorganic chemistry》2011,50(11):4732-4741
A series of novel Pd(II) and Pt(II) complexes, [PdL(2)Cl(2)]·DMF (1), [Pd(2)(L-H)(2)(bpy)Cl(2)]·(H(2)O)(2)·DMF (2), [Pd(2)(L-H)(2)(phen)Cl(2)]·2H(2)O (3), [PtL(2)Cl(2)]·H(2)O (4), [Pt(2)(L-H)(2)(bpy)Cl(2)]·2H(2)O (5), and [Pt(2)(L-H)(2)(phen)Cl(2)]·H(2)O (6), where bpy = 2,2'-bipyridine, phen = 1,10-phenanthroline, and L = 1,3-benzothiazol-2-amine, have been synthesized and characterized. The competitive binding of the complexes to DNA has been investigated by fluorescence spectroscopy. The values of the apparent DNA binding constant, calculated from fluorescence spectral studies, were 3.8 × 10(6) (K(app)(4)), 2.9 × 10(6) (K(app)(1)), 2.4 × 10(6) (K(app)(6)), 2.0 × 10(6) (K(app)(5)), 1.2 × 10(6) (K(app)(3)), and 6.9 × 10(5) (K(app)(2)). The binding parameters for the fluorescence Scatchard plot were also determined. On the basis of the data obtained, it indicates that the six complexes bind to DNA with different binding affinities in the relative order 4 > 1 > 6 > 5 > 3 > 2. Viscosity studies carried out on the interaction of complexes with Fish Sperm DNA (FS-DNA) suggested that all complexes bind by intercalation. Gel electrophoresis assay demonstrates that all the complexes can cleave the pBR 322 plasmid DNA and bind to DNA in a similar mode. The cytotoxic activity of the complexes has been also tested against four different cancer cell lines. The results show that all complexes have activity against KB, AGZY-83a, Hep-G2, and HeLa cells. In general, the Pt(II) complexes were found to be more effective than the isostructural Pd(II) complexes. The mononuclear complexes exhibited excellent activity in comparison with the dinuclear complexes in these four cell lines. Moreover, on the KB cell line (the human oral epithelial carcinoma), the observed result seems quite encouraging for the six complexes with IC(50) values ranging from 1.5 to 8.6 μM. Furthermore, apoptosis assay with hematoxylin-eosin staining shows treatment with the six complexes results in morphological changes of KB cells. The results induce apoptosis in KB cells.  相似文献   

11.
This study documents the first detailed investigation into the relationship between molecular structure and biological activity of platinum(II) complexes containing methylated derivatives of 1,10-phenanthroline (phen). A series of square planar platinum(II) compounds incorporating methylated derivatives of phen, 4-methyl-1,10-phenanthroline (4-Mephen), 5-methyl-1,10-phenanthroline (5-Mephen), 4,7-dimethyl-1,10-phenanthroline (4,7-Me2phen), 5,6-dimethyl-1,10-phenanthroline (5,6-Me2phen) and 3,4,7,8-tetramethyl-1,10-phenanthroline (3,4,7,8-Me4phen) were synthesised and the relationship between their structure and biological activity investigated. The biological activity of these compounds was quantified using the in vitro cytotoxicity assay against the L1210 Murine leukaemia cell line. Large variation in cytotoxicities with different methylation was observed. The 5- and 5,6-methylated derivatives of phen displayed a greater biological activity, with IC50 values of 2.8 +/- 0.8 microM and 1.5 +/- 0.3 microM respectively, compared with the phen compound, with an IC50 value of 9.7 +/- 0.3 microM, while all the others were inactive with IC50 values over 50 microM. Binding constants were determined using circular dichroism spectroscopy (CD) and induced circular dichroism (ICD). ICD was used to highlight any differences in the spectra. Viscometry studies and linear dichroism (LD) experiments indicate that the platinum(II) complexes intercalate although for [Pt(en)(4-Mephen)]Cl2 and [Pt(en)(4,7-Me2phen)]Cl2 this mode of binding appears to be concentration dependent. The binding of the platinum(II) complexes to the oligonucleotide d(GTCGAC)2 was studied using two-dimensional 1H NMR spectroscopy. The addition of each metal complex to the hexamer d(GTCGAC)2 produced upfield shifts of the metal complex resonances, characteristic of intercalation. Through the observation of NOE cross-peaks, two-dimensional NMR studies provided insight into the site and groove preferences of these compounds when binding to DNA.  相似文献   

12.
A series of complexes, [M(bpy)(SAr)2] (M = platinum(II) or palladium(II), bpy = 2,2'-bipyridine, SAr = 2- or 4-(acylamino)benzenethiolate, or 2-(alkylcarbamoyl)benzenethiolate), were synthesized and characterized on the basis of 1H NMR, IR, and electrochemical properties. The structures of [Pt(bpy)(S-2-Ph3CCONHC6H4)2] (1) and [Pt(bpy)(S-2-t-BuNHCOC6H4)2] (3) were determined by X-ray analysis. The complexes have intramolecular NH...S hydrogen bonds between the amide NH group and the sulfur atom. A weak NH...S hydrogen bond in these complexes and [Pd(bpy)(S-2-Ph3CCONHC6H4)2] (4) is detected from the 1H NMR spectra and the IR spectra in chloroform and in the solid state. [Pt(bpy)(S-2-Ph3CCONHC6H4)2] (1) exhibits a remarkably high-energy-shifted lowest-energy band in UV-visible spectra and has a positively shifted oxidation potential. The blue-shift of 42 nm and the positive shift of +0.24 V, as compared to those of [Pt(bpy)(SC6H5)2), are due to the effect of the NH...S hydrogen bond.  相似文献   

13.
A series of catechols with attached imide functionality (imide = phthalimide PHT, 1,8-naphthalimide NAP, 1,4,5,8-naphthalenediimide NDI, and NAP-NDI) has been synthesized and coordinated to the Pt (II)(bpy*) moiety, yielding Pt(bpy*)(cat-imide) complexes (bpy* = 4,4'-di- tert-butyl-2,2'-bipyridine). X-ray crystal structures of PHT and NAP complexes show a distorted square-planar arrangement of ligands around the Pt center. Both complexes form "head-to-tail" dimers in the solid state through remarkably short unsupported Pt...Pt contacts of 3.208 (PHT) and 3.378 A (NAP). The Pt(bpy*)(cat-imide) complexes are shown to combine optical (absorption) and electrochemical properties of the catecholate (electron-donor) and imide (electron-acceptor) groups. The complexes show a series of reversible reduction processes in the range from -0.5 to -1.9 V vs Fc (+)/Fc, which are centered on either bpy* or imide groups, and a reversible oxidation process at +0.07 to +0.14 V, which is centered on the catecholate moiety. A combination of UV-vis absorption spectroscopy, cyclic voltammetry, UV-vis spectroelectrochemistry, and EPR spectroscopy has allowed assignment of the nature of frontier orbitals in Pt(bpy*)(cat-imide) complexes. The HOMO in Pt(bpy*)(cat-imide) is centered on the catechol ligand, while the LUMO is localized either on bpy* or on the imide group, depending on the nature of the imide group involved. Despite the variations in the nature of the LUMO, the lowest-detectable electronic transition in all Pt(bpy*)(cat-imide) complexes has predominantly ligand-to-ligand (catechol-to-diimine) charge-transfer nature (LLCT) and involves a bpy*-based unoccupied molecular orbital in all cases. The LLCT transition in all Pt(bpy*)(cat-imide) complexes appears at 530 nm in CH2Cl2 and is strongly negatively solvatochromic. The energy of this transition is remarkably insensitive to the imide group present, indicating lack of electronic communication between the imide and the catechol moieties within the cat-imide ligand. The high extinction coefficient, approximately 6 x 10(3) L mol(-1) cm(-1) of this predominantly LLCT transition is the result of the Pt orbital contribution, as revealed by EPR spectroscopy of the complexes in various redox states. The CV profile of the oxidation process of Pt(bpy*)(cat-imide) in CH2Cl2 and DMF is concentration dependent, as was shown for NDI and PHT complexes as typical examples. Oxidation appears as a simple diffusion-limited process at low concentrations, with an increasing anodic-to-cathodic peak separation eventually resolving as two independent consecutive waves as the concentration of the complex increases. It is suggested that aggregation of the complexes in the diffusion layer in the course of oxidation is responsible for the observed concentration dependence. Overall, the Pt(bpy*)(cat-imide) complexes are electrochromic compounds in which a series of stepwise reversible redox processes in the potential range from 0.2 to -2 V (vs Fc (+)/Fc) leads to tuneable absorbencies between 300 and 850 nm.  相似文献   

14.
Square-planar complexes with the formula [Pt(L(2))(L(1))](X)(2) x nH(2)O, where L(1) is S-2-aminomethylpyrrolidine (S-pyrda) or 2-aminomethylpiperidine (pipda) and L(2) is diammine (X=Cl), cyclobutane-1,1-dicarboxylato (cbdca) (X=none), 2,2'-bipyridine (bpy) (X=NO(3)), or 1,10-phenanthroline (phen) (X=Cl), were prepared and the nature of the coordination of L(1) was examined by (1)H-NMR spectroscopy and X-ray crystallography. These 2-aminomethylazacycloalkane derivatives form five-membered chelate rings condensed with an azacycloalkane ring in cis- or trans-configurations. The (1)H-NMR spectrum of complexes with S-pyrda as L(1) were consistent with cis-condensed rings in an S(N) conformation with any of L(2) group. However, (1)H-NMR spectra of the complexes with pipda as L(1) indicated trans-fused successive rings for the diammine and cbdca as L(2), but spectra for bpy and phen as L(2) were consistent with a conformation having cis-fused successive rings. X-Ray crystallography data for the two complexes with pipda as L(1) and cbdca (1) and bpy (2) as L(2) confirms the different coordination behavior in the solid state.  相似文献   

15.
Four platinum(IV) complexes containing intercalating ligands [1,10-phenanthroline (phen) and 2,2′-bipyridine (bpy)] and ancillary ligands [(1S,2S)-diaminocyclohexane (SS-DACH) and (1R,2R)-diaminocyclohexane (RR-DACH)] were synthesized and characterized by 1H nuclear magnetic resonance, electrospray ionization mass spectrometry, X-ray crystal structure analysis, elemental analysis, ultraviolet absorption spectroscopy, circular dichroism spectroscopy, and electrochemical analysis. The reactions between [Pt(phen)(SS-DACH)Cl2]2+ and glutathione and Ac-CPFC-NH2 were investigated by high-performance liquid chromatography. [Pt(phen)(SS-DACH)Cl2]2+ was reduced to its corresponding Pt(II) complex [Pt(phen)(SS-DACH)]2+, while glutathione and Ac-CPFC-NH2 were oxidized to glutathione-disulfide and a peptide containing an intramolecular disulfide bond, respectively. The cytotoxicities of the Pt(IV) complexes against a human non-small cell lung cancer cell line (A549) and the corresponding cisplatin-resistant cell line (A549cisR) were evaluated. These Pt(IV) complexes showed a higher activity toward A549 and A549cisR than did cisplatin. Also, the cytotoxicities of the Pt(IV) complexes were higher for A549cisR than for A549 cells. Moreover, the cytotoxicities of the (SS-DACH)-liganded platinum complexes were higher than those of the (RR-DACH)-liganded platinum complexes in either A549 or A549cisR cells. Phen-liganded platinum complexes were more cytotoxic than the bpy-liganded platinum complexes. The cytotoxicities of these Pt(IV) complexes had no correlation with reduction potentials.  相似文献   

16.
To provide precedents for the possible interactions of platinum DNA adducts with zinc finger proteins, the complexes [Pt(dien)Cl]Cl (dien = diethylenetriamine) and [Pt(terpy)Cl]Cl (terpy = 2,2':6',2'-terpyridine) were exposed to the N,N'-bis(2-mercaptoethyl)-1,4-diazacycloheptanezinc(II) dimer, [Zn(bme-dach)]2, and the products defined by electrospray ionization mass spectrometry (ESI-MS), X-ray crystallography and (195)Pt NMR spectroscopy. The presence of a leaving chloride in both platinum(II) complexes facilitates electrophilic substitution involving sulfur-containing zinc finger synthetic models or, as in previous studies, zinc finger peptidic sequences. Monitored via ESI-MS, both reactants yielded evidence for Zn-(mu-SR)-Pt bridges followed by zinc ejection from the N2S2 coordination sphere and subsequent formation of a trimetallic Zn-(mu-SR)2-Pt-(mu-SR)2-Zn-bridged species. The isolation of Zn-(mu-SR)-Pt-bridged species [(Zn(bme-dach)Cl)(Pt(dien))]Cl is, to our knowledge, the first Zn-Pt bimetallic thiolate-bridged model demonstrating the interaction between Zn-bound thiolates and Pt(2+). In the case of the [Pt(terpy)Cl]Cl reaction with the [Zn(bme-dach)]2, ESI-MS analysis further suggests metal exchange by formation of [Zn(terpy)Cl](+), whereas the [Pt(dien)Cl]Cl reaction does not yield the corresponding [Zn(dien)Cl](+) ion. Direct synthesis of the Zn-Pt thiolate-bridged species and the Pt(N2S2) chelate, where Pt has displaced the Zn from the chelate core, permitted the isolation of X-ray-quality crystals to confirm the bridging and metal-exchanged structures. The ESI-MS, (195)Pt NMR spectroscopy, and molecular structures of the di- and trinuclear complexes will be discussed, as they provide insight into the metal-exchange mechanism.  相似文献   

17.
The crystal structures of the series of three complexes, [Cu(Gly)(bpy)Cl].2H2O (1) (Gly=glycine; bpy=2,2'-bipyridine), [Cu(Gly)(phen)Cl]2.7H2O (2) (phen=1,10-phenanthroline), and [Cu(Gly)(bpa)(H2O)Cl] (3) (bpa=2,2'-bipyridylamine) were determined, and the coordination modes of Cu(II) ternary complexes were compared. The central Cu(II) atoms of complexes 1 and 3 have a similar distorted octahedral coordination geometry, while the Cu(II) atom of complex 2 has a distorted square pyramidal coordination. In all complexes, the aromatic heterocyclic compounds bpy, phen, and bpa, behave as a bidentate N,N' ligand, and Gly behaves as a bidentate N,O ligand. DNA-binding properties of the complexes to calf thymus (CT) DNA were studied by using the fluorescence method. Each of the complexes showed binding propensity to CT DNA with the relative order 2>3> or =1. DNA cleavage studies indicate that each of the complexes, especially 2, can cleave plasmid supercoiled pBR322 DNA in the presence of H2O2 and ascorbic acid with cleavage efficiency in the order 2>3 approximately 1. The degradation of the conformation of CT DNA by the complexes was also reflected in the decrease in the intensities of the characteristic CD bands with the relative order 2>3 approximately 1.  相似文献   

18.
In this work, we theoretically investigate the effect of phenyl group on the electronic and phosphorescent properties of cyclometalated platinum(II) complexes, thereby designing an efficient blue emitting material. Three platinum(II) complexes Pt(N^N^N)Cl (N^N^N = terpyridine), Pt(N^C^N)Cl (N^C^N = 1,3-di(2-pyridyl)-benzene) and Pt(N^N^C)Cl (N^N^C = 6-phenyl-2,2′-bipyridines) are chosen as the models. Their electronic and phosphorescent properties are investigated utilizing quantum theoretical calculations. The results reveal that the phenyl group significantly affects the molecular and electronic structures, charge distribution and phosphorescent properties. The coordination bond length trans to phenyl group is the longest among the same type of bonds owing to the trans influence of phenyl group. Moreover, the phenyl group largely restricts the geometry relaxation of cyclometalated ligand. The strong σ-donor ability of Pt–C bond makes more electrons center at Pt atom and the fragments trans to phenyl group. In comparison with Pt(N^N^N)Cl and Pt(N^N^C)Cl, the complex Pt(N^C^N)Cl has the smallest excited-state geometry relaxation and the biggest emission energy and spatial overlap between the transition orbitals in the emission process. As a result, Pt(N^C^N)Cl has the largest emission efficiency, which well agrees with the experimental observation. Based on these calculation results, a potentially efficient blue-emitting material is designed via replacing pyridine groups in Pt(N^C^N)Cl by 3-methylimidazolin-2-ylidene.  相似文献   

19.
Pt(pipNC)(2)(phen) [pipNC(-) = 1-(piperidylmethyl)phenyl anion; phen = 1,10-phenanthroline] was prepared by the reaction of cis-Pt(pipNC)(2) with phen. Crystallographic and (1)H NMR data establish that the phen ligand is bidentate, whereas each piperidyl ligand is monodentate and bonded to the platinum at the ortho position of the phenyl group. Acidic conditions allowed for isolation of the salts of diprotonated Pt(pipNHC)(2)(diimine)(2+) adducts (diimine = phen, 2,2'-bipyridine, or 5,5'-ditrifluoromethyl-2,2'-bipyridine). Crystallographic and spectroscopic data for the diprotonated complexes are consistent with H···Pt interactions (2.32-2.51 ?) involving the piperidinium groups, suggesting that the metal center behaves as a Br?nsted base. Metal-to-ligand (diimine) charge-transfer states of Pt(pipNHC)(2)(phen)(2+) in solution are strongly destabilized (>2500 cm(-1)) relative to Pt(pipNC)(2)(phen), in keeping with the notion that NH···Pt interactions effectively reduce the electron density at the metal center. Though N···Pt interactions in Pt(pipNC)(2)(phen) appear to be weaker than those found for outer-sphere two-electron reagents, such as Pt(pip(2)NCN)(tpy)(+) [pip(2)NCN(-) = 1,3-bis(piperidylmethylphenyl anion; tpy = 2,2':6',2'-terpyridine], each of the Pt(pipNC)(2)(diimine) complexes undergoes diimine ligand dissociation to give back cis-Pt(pipNC)(2) and free diimine ligand. Electrochemical measurements on the deprotonated complexes suggest that the piperidyl groups help to stabilize higher oxidation states of the metal center, whereas protonation of the piperidyl groups has a destabilizing influence.  相似文献   

20.
The direct ion exchange of chloro(2,6-bis(N-methylbenzimidazol-2-yl)pyridine)platinum(II) ([Pt(Me(2)bzimpy)Cl]+) and chloro(2,2':6',2' '-terpyridine)platinum(II) ([Pt(tpy)Cl]+) complexes within a zirconium phosphate (ZrP) framework has been accomplished. The physical and spectroscopic properties of [Pt(Me(2)bzimpy)Cl]+ and [Pt(tpy)Cl]+ intercalated in ZrP were investigated by X-ray powder diffraction and X-ray photoelectron, infrared, absorption, and luminescence spectroscopies. In contrast to unintercalated complexes in fluid solution, which do not emit at room temperature, both intercalated materials in the solid state and in colloidal suspensions exhibit intense emissions at room temperature. A [Pt(Me(2)bzimpy)Cl]+-exchanged ZrP colloidal methanol suspension gives rise to an emission at 612 nm that originates from a lowest (3)MMLCT[dsigma*(Pt) --> pi*(tpy)] state (MMLCT = metal-metal-to-ligand charge transfer) characteristic of strong Pt...Pt interactions. A [Pt(tpy)Cl]+-exchanged ZrP colloidal aqueous suspension exhibits a strong emission band at 600 nm. The accumulated data demonstrate that at high concentrations, [Pt(Me(2)bzimpy)Cl]+ and [Pt(tpy)Cl]+ ions can serve as luminescent pillars inside the ZrP framework.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号