首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 234 毫秒
1.
氮是金刚石(包括天然金刚石和人工合成金刚石)中最普遍的杂质,长期以来广受研究者的关注. 人工合成出类似天然金刚石的具有较高氮含量的金刚石晶体是极富挑战性的研究课题. 本工作通过在合金溶剂和石墨碳源中添加含氮物质,利用温度梯度法在国产六面顶高压设备上合成出了系列大尺寸、高氮含量的宝石级金刚石单晶. 借助显微红外光谱,对合成的金刚石晶体中的氮含量进行了测定. 研究发现随着含氮物质添加量的提高晶体中氮含量基本呈线性增加. 最终合成出了氮含量高达1707 ppm的毫米级高氮含量金刚石单晶,以及最大尺寸达3.5 mm,氮含量达1520 ppm的绿色高氮宝石级金刚石单晶.  相似文献   

2.
房超  贾晓鹏  颜丙敏  陈宁  李亚东  陈良超  郭龙锁  马红安 《物理学报》2015,64(22):228101-228101
在压力为5.5–6.2 GPa, 温度为1280–1450 ℃的条件下, 利用温度梯度法详细考察了氮氢协同掺杂对100晶面生长宝石级金刚石的影响. 实验结果表明伴随合成腔体内氮、氢浓度的升高, 合成条件明显升高, 金刚石生长V形区间上移; 晶体的红外光谱中与氮相关的吸收峰急剧增强, 氮含量可达2000 ppm, 同时位于2850 cm-1和2920 cm-1对应于 sp3杂化 C–H 键的对称伸缩振动和反对称伸缩振动的红外特征峰逐渐增强, 表明晶体中既有高的氮含量, 同时又含有氢. 对晶体进行电镜扫描发现, 氮氢协同掺杂对晶体形貌影响明显, 出现拉长的{111}面, 且晶体表面上有三角形生长纹理. 拉曼测试表明, 晶体的峰位向高频偏移、半峰宽变大, 说明氮、氢杂质的进入对晶体内部产生了应力. 本文成功地以{100}晶面为生长面合成出高氮含氢宝石级金刚石单晶, 在探究氮氢共存环境下金刚石生长特性的同时, 也可为理解天然金刚石的形成机理提供帮助.  相似文献   

3.
所有天然Ia型金刚石红外光谱中都存在3107 cm-1特征峰,而在金属触媒直接合成的金刚石红外光谱中没有检测出3107 cm-1特征峰.本文在6.3 GPa,1500?C条件下,通过Fe70Ni30触媒中添加P3N5直接合成出具有3107 cm-1特征峰的氮氢共掺杂的金刚石.红外光谱分析表明,合成的金刚石中氢有两种存在形式:一种对应着乙烯基团C=CH2中C—H键的伸缩振动(3107 cm-1)和弯曲振动(1450 cm-1)的吸收峰,另一种对应着sp3杂化C—H键的对称伸缩振动(2850 cm-1)和反对称伸缩振动(2920 cm-1)的吸收峰.通过分析发现,3107 cm-1吸收峰与金刚石中聚集态的氮原子有关,当金刚石中没有聚集态的氮元素时,即使氮含量高也不会出现3107 cm-1峰;并且2850和2920 cm-1附近的吸收峰比3107 cm-1附近的吸收峰更为普遍存在.这说明sp3杂化C—H键比乙烯基团的C—H键更广泛存在于金刚石中,从两者的峰值看,天然金刚石中的氢杂质主要以乙烯基团C=CH2存在.3107 cm-1吸收峰与聚集态的氮原子的这种存在关系为天然金刚石形成机制的研究提供了一种新思路,同时较低的合成条件也可能为氢与其他元素共掺杂合成具有n型半导体特性的金刚石提供一个较理想的合成环境.  相似文献   

4.
曹山  刘江平  黎军  王凯  林伟  雷海乐 《物理学报》2015,64(7):73301-073301
利用自主研制的低温液体/固体制备系统制备出了均匀、透光性好的氮分子固体冰层, 测量了其近三相点的红外吸收谱, 在频率2222–2439 cm-1处观察到了一个宽的吸收带, 且最强峰位位于2288 cm-1.基于非谐振子模型计算了氮分子的振动频率, 解释了实验中得到的固体中氮分子的红外吸收带主要由氮分子的基频振动及基频振动与转动耦合引起.  相似文献   

5.
房超  贾晓鹏  陈宁  周振翔  李亚东  李勇  马红安 《物理学报》2015,64(12):128101-128101
在Ni70Mn25Co5-C体系中添加含氢化合物Fe(C5H5)2作为新型氢源, 利用温度梯度法, 在压力为5.5-6.0 GPa、温度为1280-1400 ℃的条件下, 成功合成出氢掺杂的宝石级金刚石大单晶. 通过傅里叶显微红外光谱发现, 随着Fe(C5H5)2添加量的增加, 合成晶体中与氢相关的对应于sp3杂化C-H键的对称伸缩振动和反对称伸缩振动的红外特征峰2850和2920 cm-1逐渐增强, 而晶体中氮含量却逐渐减少. 通过合成晶体的拉曼光谱分析发现, 金刚石的拉曼峰伴随Fe(C5H5)2的添加向高频偏移, 这表明氢的进入在金刚石内部产生了压应力. 观察扫描电子显微镜图像发现, 在低含量Fe(C5H5)2添加时晶体表面平滑, 而高含量添加时晶体表面缺陷增多, 且呈现出气孔状. 使用新的添加剂Fe(C5H5)2作为氢源, 合成出含氢宝石级金刚石单晶, 丰富了金刚石单晶中对氢的研究内容, 也可为理解天然金刚石的形成机理提供帮助.  相似文献   

6.
周振翔  贾晓鹏  李勇  颜丙敏  王方标  房超  陈宁  李亚东  马红安 《物理学报》2014,63(24):248104-248104
利用温度梯度法,在6.2—6.4 GPa,1270—1400℃条件下,通过在NiMnCo-C体系中添加不同比例的锌粉成功合成出3 mm左右的大尺寸金刚石单晶.研究了锌添加对金刚石颜色、形貌、内部氮杂质以及晶体结晶度的影响.结果表明:随着锌添加量逐渐增加,晶体的颜色逐渐变浅,晶体的透光性增强;当锌添加比例达到3 wt.%时,晶体表面出现大量不规则的凹坑;晶体内氮杂质主要以C心形式存在,随着锌添加量的增多晶体内氮含量逐渐降低,基于锌的除氮能力总结出两种可能的除氮机制;拉曼光谱测试结果表明,在锌添加量小于3.0 wt.%的研究范围内,锌的添加有利于提高晶体的结晶度.本研究不仅有助于天然金刚石形成机制的探究,而且对丰富金刚石的种类以及扩展人工合成金刚石的应用领域都有着重要意义.  相似文献   

7.
本文利用高温高压(HPHT)法分别合成出普通Ib型、高氮型和高氮含氢型金刚石单晶,然后对金刚石单晶进行高温高压退火处理成功制备出IaA型,IaAB型类天然金刚石大单晶. 详细研究了氮在不同退火温度下的聚集行为,及氢存在情况下C心氮的转化情况. 研究发现高氮型金刚石中氮的聚集行为直接受退火温度的影响,随着退火温度的上升,氮的聚集态转化率升高. 1850 ℃时氮的聚集态转化率达到100%,晶体颜色几乎为无色,红外吸收谱与天然IaA型钻石基本无差别. 氢的存在有利于氮原子从C心聚集到A心和B心. 退火高氮含氢晶体得到可与天然金刚石相媲美的IaAB型类天然金刚石. 此外,我们在较低压力2.5 GPa下对Ib型金刚石退火成功制备出IaA型金刚石.  相似文献   

8.
不同条件下,在单晶硅基片上沉积了含氮氟化类金刚石(FN-DLC)薄膜.原子力显微(AFM)形貌显示,掺N后,薄膜变得致密均匀.傅里叶变换吸收红外光谱(FTIR)表明,随着r(r=N2/[N2+CF4+CH4])的增大薄膜中C—H键的逐渐减少,C〖FY=,1〗N和C≡N键含量逐渐增加.X射线光电子能谱(XPS)的C1s和N1s峰拟合结果发现,N掺入导致在薄膜中出现β-C3N4和a-CNx(x=1,2,3)成分.Roman散射谱的G峰向高频方向位移和峰值展宽等证明:随着r的增大,薄膜内sp2键态含量增加. 关键词: 氟化类金刚石膜 键结构 氮掺杂  相似文献   

9.
张秀芝  王凯悦  李志宏  朱玉梅  田玉明  柴跃生 《物理学报》2015,64(24):247802-247802
利用低温显微荧光光谱研究了IIa型、Ib型、Ia型金刚石的缺陷发光性质. 研究发现, 随着氮含量增加, 间隙原子及空位逐渐被氮原子所束缚, 从而使得GR1中心、533.5 nm及580 nm中心等本征缺陷发光减弱, 而氮-空位复合缺陷(NV中心)及523.7 nm中心等氮相关缺陷发光增强. 高温退火后, 间隙原子与空位可以自由移动, IIa型金刚石中出现了NV0中心, Ib型金刚石中只剩下了NV中心, Ia型金刚石中氮原子之间发生团聚, 出现了H3中心及N3中心. 另外, 氮作为施主原子, 有利于负电荷缺陷的形成, 如3H 中心、NV- 中心.  相似文献   

10.
李荣斌 《物理学报》2007,56(6):3428-3434
在不同实验条件下,用微波等离子体化学气相沉积(MPCVD)技术在Si基体上制备了S掺杂和B-S共掺杂CVD金刚石薄膜,利用X射线衍射仪和拉曼光谱仪研究掺杂对CVD金刚石薄膜的应力影响.研究结果发现,随着S掺杂浓度的增加,薄膜中sp2杂化碳含量和缺陷增多,CVD金刚石薄膜压应力增加;小尺寸的B原子与大尺寸的S原子共掺杂时,微量B的加入改变了CVD金刚石薄膜的应力状态,共掺杂形成B-S复合体进入金刚石晶体后降低金刚石晶体的晶格畸变程度,减少S原子在晶界上偏聚数量和晶体中非金刚石结构相含量,降低由于杂质、缺陷及sp2杂化碳含量产生的晶格畸变和薄膜压应力,提高晶格完整性. 关键词: 金刚石薄膜 掺杂 应力  相似文献   

11.
Yong Li 《中国物理 B》2022,31(4):46107-046107
Crystallization of diamond with different nitrogen concentrations was carried out with a FeNiCo-C system at pressure of 6.5 GPa. As the nitrogen concentration in diamond increased, the color of the synthesized diamond crystals changed from colorless to yellow and finally to atrovirens (a dark green). All the Raman peaks for the obtained crystals were located at about 1330 cm-1 and contained only the sp3 hybrid diamond phase. Based on Fourier transform infrared results, the nitrogen concentration of the colorless diamond was < 1 ppm and absorption peaks corresponding to nitrogen impurities were not detected. However, the C-center nitrogen concentration of the atrovirens diamond reached 1030 ppm and the value of A-center nitrogen was approximately 180 ppm with a characteristic absorption peak at 1282 cm-1. Furthermore, neither the NV0 nor the NV- optical color center existed in diamond crystal with nitrogen impurities of less than 1 ppm by photoluminescence measurement. However, Ni-related centers located at 695 nm and 793.6 nm were observed in colorless diamond. The NE8 color center at 793.6 nm has more potential for application than the common NV centers. NV0 and NV- optical color centers coexist in diamond without any additives in the synthesis system. Importantly, only the NV- color center was noticed in diamond with a higher nitrogen concentration, which maximized optimization of the NV-/NV0 ratio in the diamond structure. This study has provided a new way to prepare diamond containing only NV- optical color centers.  相似文献   

12.
In this paper,we explore diamond synthesis with a series of experiments using an Fe-Ni catalyst and a P3N5 additive in the temperature range of 1250-1550 ℃ and the pressure range of 5.0-6.3 GPa.We also investigate the influence of nitrogen on diamond crystallization.Our results show that the synthesis conditions(temperature and pressure) increase with the amount of P3N5 additive increasing.The nitrogen impurity can significantly influence the diamond morphology.The diamonds stably grow into strip and lamellar shapes in the nitrogen-rich environment.The Fourier-transform infrared spectrum shows that the nitrogen concentration increases rapidly with the content of P3N5 additive increasing.By spectrum analysis,we find that with the increase of the nitrogen concentration,the Ib-type nitrogen atoms can aggregate in the A-centre form.The highest A-centre nitrogen concentration is approximately 840 ppm.  相似文献   

13.
In this paper,large single crystal diamond with perfect shape and high nitrogen concentration approximately 1671-1742 ppm was successfully synthesized by temperature gradient method (TGM) under high pressure and high temperature (HPHT).The HPHT synthesis conditions were about 5.5 GPa and 1500-1550 K.Sodium azide (NaN3) with different amount was added as the source of nitrogen into the synthesis system of high pure graphite and kovar alloy.The effects of additive NaN3 on crystal growth habit were investigated in detail.The crystal morphology,nitrogen concentration and existing form in synthetic diamond were characterized by means of scanning electron microscope (SEM) and infrared (IR) absorption spectra,respectively.The results show that with an increase of the content of NaN3 added in the synthesis system,the region of synthesis temperature for high-quality diamond becomes narrow,and crystal growth rate is restricted,whereas the nitrogen concentration in synthetic diamond increases.Nitrogen exists in diamond mainly in dispersed form (C-centers) and partially aggregated form (A-centers).The defects occur more frequently on crystal surface when excessive NaN3 is added in the synthesis system.  相似文献   

14.
In this paper, we explore diamond synthesis with a series of experiments using an Fe-Ni catalyst and a P3N5 additive in the temperature range of 1250-1550 ℃ and the pressure range of 5.0-6.3 GPa. We also investigate the influence of nitrogen on diamond crystallization. Our results show that the synthesis conditions (temperature and pressure) increase with the amount of P3N5additive increasing. The nitrogen impurity can significantly influence the diamond morphology. The diamonds stably grow into strip and lamellar shapes in the nitrogen-rich environment. The Fourier-transform infrared spectrum shows that the nitrogen concentration increases rapidly with the content of P3N5additive increasing. By spectrum analysis, we find that with the increase of the nitrogen concentration, the Ib-type nitrogen atoms can aggregate in the A-centre form. The highest A-centre nitrogen concentration is approximately 840 ppm.  相似文献   

15.
Nitrogen is successfully doped in diamond by adding sodium azide (NaN3 ) as the source of nitrogen to the graphite and iron powders. The diamond crystals with high nitrogen concentration, 1000-2200ppm, which contain the same concentrations of nitrogen with natural diamond, have been synthesized by using the system of iron-carbon- additive NAN3. The nitrogen concentrations in diamond increase with the increasing content of NAN3. When the content of NaN3 is increased to 0.7-1.3 wt. %, the nitrogen concentration in the diamond almost remains in a nitrogen concentration range from 1250ppm to 2200ppm, which is the highest value and several times higher than that in the diamond synthesized by a conventional method without additive NaN3 under high pressure and high temperature (HPHT) conditions.  相似文献   

16.
Xin-Yuan Miao 《中国物理 B》2021,30(6):68102-068102
We synthesized and investigated the boron-doped and boron/nitrogen co-doped large single-crystal diamonds grown under high pressure and high temperature (HPHT) conditions (5.9 GPa and 1290℃). The optical and electrical properties and surface characterization of the synthetic diamonds were observed and studied. Incorporation of nitrogen significantly changed the growth trace on surface of boron-containing diamonds. X-ray photoelectron spectroscopy (XPS) measurements showed good evident that nitrogen atoms successfully incorporate into the boron-rich diamond lattice and bond with carbon atoms. Raman spectra showed differences on the as-grown surfaces and interior between boron-doped and boron/nitrogen co-doped diamonds. Fourier transform infrared spectroscopy (FTIR) measurements indicated that the nitrogen incorporation significantly decreases the boron acceptor concentration in diamonds. Hall measurements at room temperature showed that the carriers concentration of the co-doped diamonds decreases, and the mobility increases obviously. The highest hole mobility of sample BNDD-1 reached 980 cm2·V-1·s-1, possible reasons were discussed in the paper.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号