首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The solubility, permeability, and diffusion time lag for carbon dioxide in polycarbonate are reported at 35°C for pressures ranging from 1 atm to 23 atm. The solubility data are very well described by the dual sorption mechanism model, Henry's law plus Langmuir adsorption, proposed for glassy polymers. Both the permeability and time lag decrease with increased CO2 pressure. These observations are not consistent with the proposal that CO2 sorbed by the Langmuir contribution is totally immobilized; however, all of the results are entirely consistent with an extension of this proposal which considers partial immobilization. The data have been quantitatively analyzed in terms of this partial immobilization model, and the results suggest for polycarbonate at 35°C that the CC2 sorbed by the Langmuir portion of the isotherm behaves as if it has only about 10% of the mobility of the gas sorbed by the Henry's law part of the isotherm. The results have also been interpreted in terms of a concentration-dependent diffusion coefficient which is shown to be mathematically equivalent to the partial immobilization model. The latter model was also formulated in thermodynamic terms, whereby fugacity was used rather than pressure, and diffusion coefficients were defined in terms of chemical potential gradients rather than concentration, but the consequences of these changes proved to be minor and no better. The significance of these observations and their interpretation is discussed.  相似文献   

2.
A new technique is described for dilatometry under high pressure. The technique is based on optical interferometry and is analogous to measuring the thickness of thin, nonabsorbing films and coatings. The procedure is demonstrated for the well-characterized system of n-pentane sorption by polyisobutylene, and then results for the dilation of polycarbonate by the sorption of carbon dioxide are presented. The dilation of polycarbonate by CO2 is nearly linear with concentration; the partial molar volume of CO2 decreases slightly with increasing pressure. This result indicates that all sorbed CO2 molecules contribute equally to the dilation of the polymer matrix and that none reside in microvoids or in preexisting free-volume elements which do not contribute to volume expansion of the polymer.  相似文献   

3.
The transport phenomena of oxygen and nitrogen across a pure polycarbonate (PC) and a cobalt(III) acetylactonate (Co(acac)3) containing PC membrane was studied. Co(acac)3 was added into a polycarbonate membrane to enhance its oxygen solubility. The oxygen sorption isotherms was measured. It was found that the oxygen solubility decreased sharply as pressure increased, especially at low pressure region. On the contrary, the oxygen permeability increased slightly with respect to pressure. Both the solution-diffusion model and traditional dual mobility model were unable to explain the inconsistent pressure dependency between solubility and permeability. Instead of adopting Langmuir-Henry sorption model, a modified dual mobility model which incorporates BET-type isotherm to describe oxygen sorption. The diffusivity of molecules moving at the first adsorbed layer was assumed to be different from those moving at higher layers. This modified dual mobility model satisfactorily described both the pressure dependency of oxygen solubility and permeability. It was also found that the increase of oxygen/nitrogen selectivity was not due to the elevation of oxygen to nitrogen solubility ratio but due to the mobility ratio of oxygen to nitrogen at the higher adsorption layers.  相似文献   

4.
Permeability data are reported for carbon dioxide in Lexan polycarbonate at 35°C. Measurements were made for both pure carbon dioxide and for a mixed feed consisting of carbon dioxide with a 117.8-torr (0.155-atm) Partial pressure of isopentane. The effects of varying upstream CO2 driving pressure from 1 up to 20 atm were studied. The permeability to CO2 is reduced significantly in the presence of isopentane; however, the fractional depression of the CO2 permeability due to the isopentane at low driving pressures is much more significant than at high CO2 driving pressures. The well-known pressure dependence of carbon dioxide permeabilities in glassy polymers, therefore, is largely diminished by introducing isopentane to the pure carbon dioxide feed. These observations are consistent with a model for transport in glassy polymers which explains the observed trends in terms of competition between the two penetrants for microvoid sorption sites existing in the non-equilibrium glassy polymer. Exclusion of carbon dioxide from microvoid sorption sites by the more condensable isopentane preempts transport through the microvoid regions, resulting in the observed depression of the CO2 permeability.  相似文献   

5.
Membrane and membrane process have been widely considered as one of the best candidates for mitigating CO2 emissions from the combustion or utilization of fossil fuels. Various amine-containing polymers constitute an important class of membranes, where the highly selective CO2 transport is achieved by the facilitated transport mechanism. In this review, the amine–CO2 chemistry is discussed in conjunction with the mechanism of the reaction-mediated CO2 transport. A wide variety of amine-containing polymers are discussed based on two synthesis motifs: (a) polyamines with amino groups covalently bound to the polymer backbone and (b) small molecule amines embedded in a polymer matrix. This review concludes with the remarks on the facilitated transport membranes for post-combustion carbon capture (CO2/N2) and hydrogen purification (CO2/H2).  相似文献   

6.
Supercritical carbon dioxide readily induces crystallization in bisphenol A polycarbonate. Crystallization begins within one h of exposure to the CO2 at temperatures and pressures as low as 75°C and 100 atm. The degree of crystallinity increases sharply as the CO2 pressure is raised from 100 to 300 atm but levels off thereafter. This behavior is likely due to a minimum in the Tg of the polycarbonate/CO2 mixture owing to the opposite effects of the pressure on the Tg of the polymer and on the equilibrium weight fraction of CO2 absorbed. Percent crystallinities of over 20%, comparable to that achieved using acetone or other organic liquids, have been obtained after 2 h exposure to supercritical CO2. Since polycarbonate degasses quickly and quantitatively at ambient temperature and pressure, the high Tg of bisphenol A polycarbonate can be regained in the crystallized material without further vacuum treatment.  相似文献   

7.
Plasticization of gas separation membranes by carbon dioxide permanently alters their performance and increases the possibility of membrane failure. This is amplified in ultra-thin composite membranes, where the active polymeric layer is less than 2 μm. Here, the plasticization influence of CO2 is measured on ultra-thin polysulfone composite membranes for a range of active layer thicknesses, at four temperatures. The resulting permeability–pressure isotherms demonstrate plasticization occurs for all thicknesses at pressures lower than has been reported for dense membranes. These isotherms were quantitatively fitted with an expanded dual-sorption model that takes into account plasticization of the membrane. The plasticization potential of CO2 for polysulfone was found to increase with reduced active layer thickness. Similarly, the plasticization potential of CO2 was found to decrease with temperature. These results are consistent with similar research that shows that thin films behave differently to dense membranes.  相似文献   

8.
Brillouin light scattering was used to probe acoustic waves propagating with both longitudinal and transverse polarizations in the surface and the bulk of self‐supported particle track‐etched polycarbonate membranes with 15‐ and 80‐nm nanopores. The recorded scattering line shape at gigahertz frequencies reveals changes in the surface waves of the membranes which are more pronounced for the 80‐nm nanopores despite the low porosity (0.7 and 0.05%). Because the measured elastic constants (1.2 and 6.2 GPa) were found to compare very well with the values for thick polycarbonate film, modifications of the elasto‐optical coefficients and/or the transparency might be the reason for the different scattering line shapes. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 3311–3317, 2004  相似文献   

9.
A new polymer-supported chromium porphyrin has been prepared and fully characterised; its catalytic activity and recyclability were investigated for the ring-opening copolymerisation of 1,2-cyclohexene oxide (CHO) and carbon dioxide (CO2).  相似文献   

10.
Transmembrane transport of ammonia and carbon dioxide through perfluorosulfonic membranes in ionic forms of transition metals was studied in a wide temperature interval. The different patterns of the temperature plots of the permeability coefficient of ammonia were found for different ionic forms of the membrane. An increase in the ammonia permeability with an increase in the moisture contents of the membrane also depends on its ionic form. The effects observed are explained by the different structures of water—ammonia complexes formed with metal ions. The mechanism of transmembrane transport of ammonia through perfluorosulfonic membranes in various ionic forms is discussed.  相似文献   

11.
The first successful example of the formation of polycarbonate from 1-atm carbon dioxide and epoxide was demonstrated by the alternating copolymerization of carbon dioxide and epoxide with manganese porphyrin as a catalyst. The copolymerization of carbon dioxide and cyclohexene oxide with (porphinato)manganese acetate proceeded under the 1-atm pressure of carbon dioxide to give a copolymer with an alternating sequence. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 3549–3555, 2003  相似文献   

12.
We present results from a molecular dynamics study of the dissociation behavior of carbon dioxide (CO(2)) hydrates. We explore the effects of hydrate occupancy and temperature on the rate of hydrate dissociation. We quantify the rate of dissociation by tracking CO(2) release into the liquid water phase as well as the velocity of the hydrate-liquid water interface. Our results show that the rate of dissociation is dependent on the fractional occupancy of each cage type and cannot be described simply in terms of overall hydrate occupancy. Specifically, we find that hydrates with similar overall occupancy differ in their dissociation behavior depending on whether the small or large cages are empty. In addition, individual cages behave differently depending on their surrounding environment. For the same overall occupancy, filled small and large cages dissociate faster in the presence of empty large cages than when empty small cages are present. Therefore, hydrate dissociation is a collective phenomenon that cannot be described by focusing solely on individual cage behavior.  相似文献   

13.
Sorption and permeability measurements have been performed to determine the transport parameters of carbon dioxide through dense homogeneous PEEKWC membranes. The enthalpy of solution of CO2 is exothermic. The concentration dependence of diffusion has been measured. Permeability coefficients obtained from sorption data have been compared with the experimental values, obtaining a good agreement.  相似文献   

14.
To confirm the validity of the working assumption that a thin dense skin layer in an asymmetric membrane can be essentially replaced by a thick homogeneous dense membrane, both homogeneous and asymmetric polysulfone membranes were prepared by solvent casting, and the permeation behavior of carbon dioxide through these two types of membranes was investigated. The pressure dependence of the mean permeability coefficient through an asymmetric polysulfone membrane is apparently very similar to that through a homogeneous dense membrane, following the dual mode mobility model driven by gradients of chemical potential. The dense skin layer in the asymmetric membrane can be simulated approximately by a homogeneous dense membrane from the point of view of gas sorption and diffusion.  相似文献   

15.
We have used atomically detailed simulations to examine the adsorption and transport diffusion of CO2 and N2 in single-walled carbon nanotubes at room temperature as a function of nanotube diameter. Linear and spherical models for CO2 are compared, showing that representing this species as spherical has only a slight impact in the computed diffusion coefficients. Our results support previous predictions that transport diffusivities of molecules inside carbon nanotubes are extremely rapid when compared with other porous materials. By examining carbon nanotubes as large as the (40,40) nanotube, we are able to compare the transport rates predicted by our calculations with recent experimental measurements. The predicted transport rates are in reasonable agreement with experimental observations.  相似文献   

16.
This article reviews recent progress in the exploitation of carbon dioxide as a chemical feedstock. In particular, the design and development of molecular complexes that can act as catalysts for the electrochemical reduction of CO(2) is highlighted, and compared to other biological, metal- and non-metal-based systems.  相似文献   

17.
Monte Carlo and molecular dynamics simulations have been used in order to test the ability of a three center intermolecular potential for carbon dioxide to reproduce literature experimental thermophysical values. In particular, both the shear viscosity under supercritical conditions and along the phase coexistence line, as well as the thermal conductivity under supercritical conditions, have been calculated. Together with the already reported excellent agreement for the phase coexistence densities, the authors find that the agreement with experimental values is, in general, good, except for the thermal conductivity at low density. Although extended versions of the model were employed, which include an explicit account of bending and vibrational degrees of freedom, a significant difference was still found with respect to the reported experimental value.  相似文献   

18.
Carbon nanotube membranes have been shown to rapidly transport liquids; but progressive hydrophilic modification--contrary to expectations--induces a drastic reduction of water flow. Enhanced electrostatic interaction and the disruption of the mechanically smooth graphitic walls is the determinant of this behavior. These results have critical implications in the design of nanofluidic devices.  相似文献   

19.
A torsional pendulum method was used to study the transient effects of sulfur dioxide at pressures up to 700 torr on the rigidity of Bisphenol-A polycarbonate at 25°C. Incremental increases in pressure led to a decrease and then to an increase in rigidity. Removal of sulfur dioxide at the rigidity minimum led to a rapid recovery in rigidity, but after apparent equilibrium had been reached the rigidity was not fully reversible. These observations provide evidence that sorption of sulfur dioxide results in structural reorganization of the polymer. A qualitative discussion of the data is presented.  相似文献   

20.
We report on a molecular simulation study of the homogeneous nucleation of CO2 in the supercooled liquid at low pressure (P = 5 MPa) and for degrees of supercooling ranging from 32% to 60%. In all cases, regardless of the degree of supercooling, the structure of the crystal nuclei is that of the Pa3 phase, the thermodynamically stable phase. For the more moderate degree of supercooling of 32%, the nucleation is an activated process and requires a method to sample states of high free energy. In this work, we apply a series of bias potentials, which promote the ordering of the centers of mass of the molecules and allow us to gradually grow crystal nuclei. The reliability of the results so obtained is assessed by studying the evolution of the nuclei in the absence of any bias potential, and by determining their probability of growth. We estimate that the size of the critical nucleus, for which the probability of growth is 0.5, is approximately 240 molecules. Throughout the nucleation process, the crystal nuclei clearly exhibit a Pa3 structure, in apparent contradiction with Ostwald's rule of stages. The other polymorphs have a much larger free energy. This makes their formation highly unlikely and accounts for the fact that the nucleation of CO2 proceeds directly in the stable Pa3 structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号