首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 943 毫秒
1.
The intensity parameters of holmium in sodium, barium and zinc tellurite glasses were obtained from the absorption spectra. Using these parameters and the matrix elements of Ho3+, transition probabilities and branching ratios from the excited states (5F4, 5S2), 5F5, 5I4, 5I5 and 5I6 were calculated. Quantum efficiencies for the (5F4, 5S2) state were obtained and the multiphonon transition rates calculated at room temperature. Non-radiative multiphonon relaxations were obtained from the (5F4, 5S2) level. The relaxation increased in the order of zinc, barium, sodium, and is assumed to be dependent on the local site symmetry of Ho3+ in glass.  相似文献   

2.
Upconversion luminescence tuning of β‐NaYF4 nanorods under 980 nm excitation has successfully been achieved by tridoping with Ln3+ ions with different electronic structures. The effects of Ce3+ ions on NaYF4:Yb3+/Ho3+ as well as Gd3+ ions on NaYF4:Yb3+/Tm3+(Er3+) have been studied in detail. By tridoping with Ce3+ ions, not only were unusual 5G55I7 and 5F2/3K85I8 transitions from Ho3+ ions and 5d→4f transitions from Ce3+ ions observed in NaYF4:Yb3+/Ho3+ nanorods, but also an increase in the intensity of 5F55I8 relative to 5S2/5F45I8 with increasing Ce3+ concentration, which can be attributed to efficient energy transfers of 5I6 (Ho)+2F5/2 (Ce)→5I7 (Ho)+2F7/2 (Ce) and 5S2/5F4 (Ho)+2F5/2 (Ce)→5F5 (Ho)+2F7/2 (Ce). Interestingly, with increasing pump power density, the luminescence of NaYF4:Yb3+/Ho3+ nanorods is always dominated by the 5S2/5F45I8 transition, whereas the luminescence of Ce3+‐tridoped NaYF4:Yb3+/Ho3+ nanorods is dominated by the 5S2/5F45I8 and 5G55I7 transitions in turn. These observations are discussed on the basis of a rate equation model. Furthermore, Gd3+‐tridoped NaYF4:Yb3+/Tm3+(Er3+) nanorods can emit multicolor upconversion emissions spanning from the UV to the near‐infrared under 980 nm excitation. 6P5/28S7/2 (≈306 nm) and 6P7/28S7/2 (≈311 nm) transitions from Gd3+ ions were observed. In addition to the aforementioned luminescence properties, these Gd3+‐tridoped nanorods also exhibit paramagnetic behavior at room temperature and superparamagnetic behavior at 2 or 5 K.  相似文献   

3.
    
The reaction of [{(η5-C5Me5)M(μ-Cl)Cl}2] {where M = Rh (1), Ir (2)} with functionalized phosphine viz., diphenyl-2-pyridylphosphine (PPh2Py) in dichloromethane solvent yield neutral ϰ1-P-coordinated rhodium and iridium complexes [(η5-C5Me5)RhCl21-P-PPh2Py)]3 and [(η5-C5Me5) IrCl21-P-PPh2Py)]4. Reaction of complexes 1 and 2 with the ligand PPh2Py in methanol under reflux give bis-substituted complexes such as [(η5-C5Me5)RhCl(ϰ1-P-PPh2Py)2]+ 5 and [(η5-C5Me5)IrCl(ϰ1-P-PPh2Py)2]+ 6, whereas stirring in methanol at room temperature gives P-, N-chelating complexes of the type [(η5-C5Me5)RhCl(ϰ2-P-N-PPh2Py)]+ 7 and [(η5-C5Me5)IrCl(ϰ2-P-N-PPh2Py)]+ 8. Neutral ϰ1-P-coordinated complexes [(η5-C5Me5)RhCl21-P-PPh2Py)]3 and [(η5-C5Me5)IrCl21-P-PPh2Py)]4 easily undergo conversion to the cationic P-, N-chelating complexes [(η5-C5Me5)RhCl(ϰ2-P-N-PPh2Py)]+ 7 and [(η5-C5Me5) IrCl(ϰ2-P, N-PPh2Py)]+ 8 on stirring in methanol at room temperature. These complexes are characterized by FT-IR and FT-NMR spectroscopy as well as analytical methods. The molecular structures of the representative complexes [(η5-C5Me5)RhCl21-P-PPh2Py)]3, [(η5-C5Me5)IrCl21-P-PPh2Py)]4 and hexafluorophosphate salt of complex [(η5-C5Me5)IrCl(ϰ2-P-PPh2Py)2]+ 6 are established by single-crystal X-ray diffraction methods  相似文献   

4.
The metallation of the η5-C5H5(CO)2Fe-η15-C5H4Mn(CO)3 complex with BunLi (THF, ?78 °C) followed by the treatment of the lithium derivative with Ph2PCl afforded the η5-Ph2PC5H4(CO)2Fe-η15-C5H4Mn(CO)3 complex. The reaction of the latter with η5-C5H5(CO)3WCl in the presence of Me3NO produced the trinuclear complex η5-C5H5Cl(CO)2W-η15-(Ph2P)C5H4(CO)2Fe-η15-C5H4Mn(CO)3. The structure of the latter complex was established by IR, UV, and 1H and 31P NMR spectroscopy and X-ray diffraction. The reaction of MeSiCl3 with three equivalents of LiC5H4(CO)2Fe-η15-C5H4Mn(CO)2PPh3 gave the hexanuclear complex MeSi[C5H4(CO)2Fe-η15-C5H4Mn(CO)2PPh3]3.  相似文献   

5.
New η3-allyldimethyl complexes Ru(η5-C5R5)(η3-C3H5)(CH3)2, where R = H or CH3, are prepared from Ru(η5-C5R5)(η3-C3H5)Br2 by alkylation with trimethyl-aluminium. The RuIV dimethyl complex is thermally converted to the RuII 1-methylallyl compound, Ru(η5-C5R5)(η3-CH2CHCHCH3)L, where L = CO or t-C4H9NC, with evolution of methane. Kinetic and deuteration studies on the reductive process are also discussed.  相似文献   

6.
5-Cyclopentadienyl)(η5-pyrrolyl)titanium(IV) dichloride, (η5-indenyl)-(η5-pyrrolyl)titanium(IV) dichloride and (η5-cyclopentadienyl)(η5-indenyl)-titanium(IV) dichloride, when treated with 8-hydroxyquinoline (oxine) in aqueous medium form ionic derivatives of the type, [(η5-R)(η5-R′)TiL]+ Cl- (R = C5H5, C9H7, R′ = C4H4N; R = C5H5, R′ = C9H7; L is the conjugate base of (oxine). A number of halide and complex halogeno anions present in aqueous solution were isolated as salts of these ionic complexes giving derivatives of the type, [(η5-R)(η5-R′)TiL]+ X- (X = Br-, I-, ZnCl3(H2O)-, CdCl42-, HgCl3-). Conductivity measurements in nitrobenzene solution indicate that these complexes are electrolytes. Both the IR and 1H NMR spectral studies demonstrate that the ligand L is chelating. Consequently there is tetrahedral coordination about the titanium(IV) ion.  相似文献   

7.
Palladium(II) Complexes of 1,1,3,3,5,5‐Hexakis(dimethylamino)‐λ5‐[1,3,5]triphosphinine 1,1,3,3,5,5‐Hexakis(dimethylamino)‐1λ5‐3λ5‐5λ5‐[1,3,5]triphosphinine ( 5 ) reacts with (benzonitrile)2PdCl2 to give the chelate complex dichloro(dodeca‐N‐methyl‐1λ5,3λ5,5λ5‐1,3,5‐triphosphinine‐1,1,3,3,5,5‐hexaamin‐C2,C4)palladium ( 6 ). In a pyridine‐d5 solution of 6 the complex dichloro(dodeca‐N‐methyl‐1λ5,3λ5,5λ5‐1,3,5‐triphosphinine‐1,1,3,3,5,5‐hexaamin‐C2)((2H5)pyridine‐N)palladium ( 7 ) is formed. The solute 7 could not be isolated as a solid, because elimination of the solvent regenerates 6 quantitatively. Properties, nmr and ir spectra of 6 and 7 are reported. 6 is characterized by the results of an X‐ray structural analysis.  相似文献   

8.
Transition Metal Complexes of 1,1,3,3-Tetrakis(dimethylamino)-1λ5,3λ5-Diphosphete 1,1,3,3-Tetrakis(dimethylamino)-1λ5,3aλ5-diphosphete, 1 , reacts with W(CO)6 to yield the isomeric complexes {1,1,3,3-tetrakis(dimethylamino)-1λ5,3λ5-diphosphete}(pentacarbonyl)tungsten 4 and {1,1,3,3-tetrakis(dimethylamino)-1,4-dihydro-1λ5,3λ5-[1,3]diphosphetium}(pentacarbonyl)tungsten 5 . With Cr(CO)6 the complex {1,1,3,3-tetrakis(dimethylamino)-1λ5,3λ5-diphosphete}(pentacarbonyl)chromium 6 is formed. From the reaction products of Fe3(CO)12 and Fe2(CO)9 with 1 the complex {1,1,3,3-tetrakis(dimethylamino)-1λ5,3λ5-diphosphete}(pentacarbonyl)iron 7 could be isolated. Properties, nmr, ir and mass spectra of the new compounds are reported. 6 and 7 were characterized by X-ray structure determinations.  相似文献   

9.
Oxidation of (η5-C5H5)2MCl (M = Nb, Ta) with 1 mol of Cl2, Br2 or I2 gives (η5-C5H5)2MClX2 whereas the reaction with an excess of the halogen gives the cationic complexes [η5-C5H5)2MClX]+ X3? (X = Br, I). Similar oxidation of (η5-C5H5)2MCl2 with 0.5 mol of halogen gives (η5-C5H5)2MCl2X complexes, but if the halogen is used in excess cationic [η5-C5H5)2MCl2]+ X3? (X = Br, I; M = Ta and X = I, M = Nb) are obtained. All these complexes can also be obtained simultaneously by oxidizing (η5-C5H5)4M2Cl3, and the separation is fairly easy in most cases. Conductivity and IR and NMR data are discussed.  相似文献   

10.
The tricarbonylchromium η6π6 complexes of 2,4,6-triphenyl- and 2,4,6-tri-t-butyl-λ3-phosphorins 3a and 3b add nucleophiles regio- and stereo-specifically to the phosphorus atom in the exo-position giving the λ4-phosphorin anions which now add electrophiles in the endo position, giving η5π65-phosphorin ylide complexes 5a and 5b, respectively. The 1H, 13C and 31P NMR spectra of 3a and 3b and especially 5a and 5b are discussed with respect to the stereoisomeric complexes 5a having two different exocylic substituents at the phosphorus atom, synthesized from e.g. 1-ethyl-1-methyl-2,4,6-triphenyl-λ5-phosphorin and Cr(CO)6. The tricarbonylchromium-1,1,-dialkyl or alkyl-aryl-2,4,6-tri-t-butyl-λ5-phosphorin 5b can only be synthezised from tricarbonylchromium-2,4,6-tri-t-butyl-λ3-phosphorin by addition of nucleophiles and electrophiles since the corresponding λ5-phosphorin derivatives are not available. By removal of the tricarbonylchromium residue from the λ5-phosphorin-ylide complexes 5b, however, also 2,4,6-tri-t-butyl-λ5-phosphorins can be prepared.  相似文献   

11.
Three new azamacrocylic complexes of divalent transition-metal ions were synthesized by taking Co(II), Ni(II), and Cu(II) metal ions as templates. The macrocyclic ligand (12Z,52Z,54E)-11,12,13,14,15,16,51,52,53,54,55,56-dodecahydro-2,4,6,8-tetraaza-1 (2,4),5(4,2)-pyrimidine-3,7(1,2)-dibenzenacyclooctaphane-16,56-dione was derived from o-phenylenediamine (OPD) and 2-thiobarbituric acid (TBA). All the complexes were fully characterized through spectroscopic techniques and elemental analyses. The structures of the macrocyclic complexes were determined by IR, UV–vis, ESI-MS, TGA, molar conductance, magnetic moment, and electron spin resonance data. On the basis of the above studies, the complexes may be formulated as [MLX2], in which L is a macrocyclic ligand and X = CH3COO. All the macrocyclic complexes were biologically screened to evaluate their antimicrobial efficacy. DNA binding study of two representative complexes was performed by UV–vis titrations.  相似文献   

12.
Metal Complexes of Biologically Important Ligands. XCV. η5-Pentamethylcyclopentadienyl Rhodium, Iridium, η6- Benzene Ruthenium, and Phosphine Palladium Complexes of Proline Methylester and Proline Amide Proline methylester (L1) and proline amide (L2) give with the chloro bridged complexes [(η5 -C5Me5)MCl2]2 (M ? Rh, Ir), [(η6 -benzene)RuCl2]2 and [Et3PPdCl2]2 N and N,O coordinated compounds: (η5 -C5Me5)M(Cl2)L1 ( 1, 2 M ? Rh, Ir), [(η5-C5Me5) Rh(Cl)(L2)]+Cl? ( 5 ), [(η6- C6Me6) Ru(Cl)(L2)]+Cl? ( 6 ), [(η6-p-cymene)Ru(Cl)(L2)]+Cl? ( 7 ), [(eta;5-C5Me5)M(Cl)(L2-H+)] ( 9, 10 M ? Rh, Ir), (Et3P)Pd(Cl)2L1 ( 3 ), and [(Et3P)Pd(Cl)(L2)]+Cl? ( 8 ). The NMR spectra indicate that for 5 and 6 only one diastereoisomer is formed. The complexes 1, 2, 3 and 5 were characterized by X-ray diffraction.  相似文献   

13.
Coordination Chemistry of P‐rich Phosphanes and Silylphosphanes. XVII [1] [Co(g5‐Me5C5)(g3tBu2PPCH–CH3)] from [Co(g5‐Me5C5)(g2‐C2H4)2] and tBu2P–P=P(Me)tBu2 [Co(η5‐Me5C5)(η3tBu2PPCH–CH3)] 1 is formed in the reaction of [Co(η5‐Me5C5)(η2‐C2H4)2] 2 with tBu2P–P 4 (generated from tBu2P–P=P(Me)tBu2 3 ) by elimination of one C2H4 ligand and coupling of the phosphinophosphinidene with the second one. The structure of 1 is proven by 31P, 13C, 1H NMR spectra and the X‐ray structure analysis. Within the ligand tBu2P1P2C1H–CH3 in 1 , the angle P1–P2–C1 amounts to 90°. The Co, P1, P2, C1 atoms in 1 look like a „butterfly”︁. The reaction of 2 with a mixture of tBu2P–P=P(Me)tBu2 3 and tBu–C?P 5 yields [Co(η5‐Me5C5){η4‐(tBuCP)2}] 6 and 1 . While 6 is spontaneously formed, 1 appears only after complete consumption of 5 .  相似文献   

14.
Polythiophenes with reactive Zincke salt structure, P4ThPy+DNP(Cl?)‐a and P5ThPy+DNP(Cl?)‐a , were synthesized by the oxidation polymerization of oligothiophenes, such as 3'‐(4‐N‐(2,4‐dinitrophenyl)pyridinium chloride)?2,2':5',2'';5'',2'''‐quarterthiophene ( 4ThPy+DNP(Cl?) ) and 4''‐(4‐N‐(2,4‐dinitrophenyl)pyridinium chloride)?2,2';5',2'';5'',2''';5''',2''''‐quinquethiophene ( 5ThPy+DNP(Cl?) ), with iron(III) chloride. The reaction of P5ThPy+DNP(Cl?)‐a with R‐NH2 [R = n‐hexyl (Hex) and phenyl (Ph)] substituted the 2,4‐dinitrophenyl group into the R group with the elimination of 2,4‐dinitroaniline to yield P5ThPy+R(Cl?) . Similarly, model compounds, 4ThPy+R(Cl?) and 5ThPy+R(Cl?) (R = Hex and Ph), were also synthesized. In contrast to the photoluminescent 4ThPy and 5ThPy , the compounds P4ThPy+DNP(Cl?)‐a , P5ThPy+DNP(Cl?)‐a , and P5ThPy+R(Cl?) showed no photoluminescence because their internal pyridinium rings acted as quenchers. Cyclic voltammetry measurements suggested that P4ThPy+DNP(Cl?)‐a , P5ThPy+DNP(Cl?)‐a , and P5ThPy+R(Cl?) received an electrochemical reduction of the pyridinium and 2,4‐dinitrophenyl groups and oxidation of the polymer backbone. P4ThPy+DNP(Cl?)‐a and P5ThPy+DNP(Cl?)‐a were electrically conductive (ρ = 3.0 × 10 ? 6 S cm ? 1 and 2.1 × 10 ? 6 S cm ? 1, respectively) in the nondoped state. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 481–492  相似文献   

15.
The reaction of a mixture of sodium cyclopentadienide and the monolithium salt or dilithium salt of 2,2-bis(indenyl)propane with FeCl2 leads to the mononuclear complex [(η5-C5H5)Fe(η5-ind-C(CH3)2-ind)] (ind = 1-indenyl) (1) and the dinuclear complex [{(η5-C5H5)Fe(η5-ind)}2C(CH3)2] (2), respectively. [(η5-Me5C5)Fe(tmeda)Cl] reacts with dilithium 1,1′-biindenyl under formation of [{(η5-Me5C5)Fe}2(μ-η55-1,1′-biind)] (4). Due to the annelated arene rings of the η5-indenyl ligands, 2 and 4 may act as 4-electron donor ligands, as exemplified by the reaction with the triple-decker complex [{(η5-Me5C5)Co}2(μ-η66-toluene)], which afforded the tetranuclear dimer of triple-decker complexes [{(η5-C5H5)Fe(η5-Me5C5)Co(μ-η54-1-ind)}2C(CH3)2] (3) and the trinuclear complex [{(η5-Me5C5)Fe}25-Me5C5)Co(μ3545-1,1′-biind)] · Et2O (5 · Et2O) by replacement of the central toluene deck, respectively. The [(η5-Me5C5)Co] fragments of 3 and 5 are bonded via the six-membered rings of the indenyl ligands in a η4-fashion. Caused by the coordination to the Co atoms the six-membered rings lose their planarity and adopt a butterfly structure. The coordination geometry of the Fe atoms is similar in all five complexes. Each Fe atom is coordinated by the C atoms of one of the five-membered rings of the indenyl ligands in a slightly distorted η5 manner (η3 + η2-coordination) and by a cyclopentadienyl ligand in a regular η5-fashion. The structures of 3 and 5 represent the first examples of slipped triple-decker complexes which comprise indenyl ligands in a μ-η54 coordination mode.  相似文献   

16.
Abstract

Syntheses and structures of penta- and hexaphosphorus analogues of ferrocene have been described recently1. Unlike their simple ferrocene analogues, these complexes have further ligating potential towards other transition metal centres by virtue of the availability of the ring phosphorus lone-pair electrons that are not involved in the η5-coordination. We now describe the first examples of coordination compounds of the triphospha-ferrocene [Fe(η5-C5Me5) (η5-C2 tBu2P3]. In the ruthenium complex [Fe(η5-C5Me5)(η5-C2 tBu2P3) Ru3(CO)9] 2 two adjacent phosphorus atoms of the η5-C2 tBu2P3 ring are interlinked by a ruthenium carbonyl cluster in which all three ruthenium atoms interact with the phosphorus atoms. The tetrametallic nickel complex [Fe(η5-C5Me5)(η5-C2 tBu2P3)Ni(CO)2]2 3 represents the first example of intermolecular interlinkage of two phospha-ferrocene systems by two metal centres.  相似文献   

17.
The fluorination of 10-oxo-10H-5λ4,10λ4-thianthren-5-ylideneamine (2) with Selectfluor™ affords 5-fluoro-10-oxo-5,10-dihydro-5λ6,10λ4-thianthren-5-nitrile (4). The amination of 4 with morpholine gives 5-morpholino-10-oxo-5,10-dihydro-5λ6,10λ4-thianthren-5-nitrile (5). The stereochemical course of both reactions has been studied, while the configurations of their products, cis-isomer 4 and trans-5-morpholino-10-oxo-5,10-dihydro-5λ6,10λ4-thianthren-5-nitrile (trans-5) are elucidated by the use of X-ray crystallographic analyses.  相似文献   

18.
Hydride or methyl abstraction from (η5-C5H5)(OC)3MH (M = Mo, W), (OC)5ReCH3 with benzyliumhexafluoroantimonate gives the complexes [(η5-C5H5)(OC)3M(OCPhH)]+SbF6 and [(OC)5Re(OCPhMe)]+SbF6, respectively. The acetaldehyde and benzaldehyde complexes [(η5-C5H5)(OC)3M(OCRH)]+BF4 (M = Mo, W; R = Me, Ph), [(OC)5Re(OCMeH)]+Bf4 can also be formed by treating (η5-C5H5)(OC)3MFBF3 or (OC)5ReFBF3 with aldehyde.  相似文献   

19.
[MoCl(CO)35-C5H5)] on photolysis with allyl or crotyl halides C5H4RX gives MoIV complexes [MoX2(CO)(η3-C3H4R)(η5-C5H5)] (R = H, X = Cl, Br, I; R = Me, X = Cl, Br). [WCl(CO)35-C5H5)] under similar conditions gives trihalides [WX3(CO)25-C5H5)] (X = Cl, Br) on reaction with C3H5Cl and C3H5Br while [WCl(CO)35-C5H4SiMe3)] and [CrI(CO)35-C5H5)] react with allyl chloride to give [WCl3(CO)25-C5H4SiMe3)] and [CrCl25-C5H5)] respectively.  相似文献   

20.
The complexes (η5-C5H5)Pd(η1-C5H5)PR3 which are prepared from [Cl(PR3)-Pd]2(μ-OCOCH3)2 and TlC5H5 are fluxional in solution. According to the 1H and 13C NMR spectra at various temperatures, two dynamic processes occur. The process with the higher activation energy is a π/σ (η51) exchange of the two different cyclopentadienyl ligands, whereas the second one with the lower activation energy presumably is a metallotropic rearrangement (1,2-shift). The coalescence temperature for the η51 exchange depends on the size of the phosphine. The X-ray structural analysis of (C5H5)2PdPPri3 proves that it exists as a “frozen” η5 + η1 structure in the crystal with the palladium approximately in a square-planar coordination. The η5-bonded cyclopentadienyl ring shows some unusual bonding patterns which are obviously electronic in nature. EHT-MO calculations for (η5-C5H5)PdCH3(PH3) indicate that in this model system alternating CC distances in the ring and a stronger bond of the metal to one of the five carbon atoms of the C5H5 ligand are to be expected. The calculations suggest that in similar complexes possessing a six-electron donor ligand like C5H5? and a metal fragment which is isolobal to PdCH3(PH3)+, analogous distortions should be observed. Some reactions of the compounds (η5-C5H5)Pd(η1-C5H5)PR3 are described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号