首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have constructed four types single-wall carbon nanotube intramolecular junctions (IMJs) of (5,5)/(8,0), (5,5)/(10,0), (5,5)/(9,0)A, and (5,5)/(9,0)B along a common axis, and calculated their electronic and transport properties using a tight binding-based Green's function approach that is particular suitable for realistic calculation of electronic transport property in extended system. Our results show that quasi-localized states can appear in the metal/semiconductor heterojunctions ((5,5)/(8,0) and (5,5)/(10,0)junctions), which is desirable for the design of a quantum device; and the conductance of M-M IMJs is very sensitive to the connectivity of the matching tubes, certain configurations of connection completely stop the flow of electron, while others permit the transmission of the current through the interface. These results may have implications for the device assembly and manipulation process of all carbon nanotubes-based microelectronic elements. Received 14 January 2003 / Received in final form 25 February 2003 Published online 4 June 2003 RID="a" ID="a"e-mail: lfyzz@yahoo.com.cn  相似文献   

2.
刘红 《中国物理 B》2010,19(5):57206-057206
This paper studies the quantum conductance properties of three-terminated carbon nanotube Y-junctions, which are built by connecting three (5,5) single-walled carbon nanotubes. The results show that the quantum conductance at the Fermi energy oscillates periodically with the junction's size, and the number of oscillating periodic layers is 3 which is the same as that in the two terminated $(10,0)/m(5,5)/(10,0)$ junctions. Moreover, this Y-junction with different size exhibits obvious different distribution of electron current in the two drain branches, called shunt valve effect of electronic current. Thus the degree of this effect can be controlled and modulated directly by constructing the three branches' sizes or the distribution of defect. The results show in detail that the difference between the two drain currents can be up to two times for some constructions with special sizes. In addition, the uniform distribution of defects in the Y-junction leads to lower quantum conductance than that of other defect configurations.  相似文献   

3.
Mesoscopic transport through an ultrasmall quantum dot (QD) coupled to two single-wall carbon nanotube (SWCN) leads under microwave fields (MWFs) is investigated by employing the nonequilibrium Greens function (NGF) technique. The charging energy and junction capacitances influence the output characteristics sensitively. The MWFs applied on the leads and gate induce novel photon-assisted tunnelling, strongly associated with the density of states (DOS) of the SWCN leads. The SWCN leads act as quantum wires, and the compound effect induces nonlinear current behavior and resonant tunnelling in a larger region of energy scale. Negative differential conductance (NDC) is clearly observed, as the source-drain junction capacitances C L , and C R are large enough. The multi-resonant NDC oscillation appears due to the charging and photon-electron pumping effects associated with the contribution of multi-channel quantum wires.Received: 5 July 2004, Published online: 14 December 2004PACS: 73.40.-c Electronic transport in interface structures - 73.63.Fg Nanotubes - 73.61.Wp Fullerenes and related materials - 73.22.-f Electronic structure of nanoscale materials: clusters, nanoparticles, nanotubes, and nanocrystals  相似文献   

4.
We study electron transmission through a periodic array of quantum dots (QD) sandwiched between doped semiconductor leads. When the Fermi wavelength of tunneling electron exceeds the array lattice constant, the off-resonant per QD conductance is enhanced by several orders of magnitude relative to the single-QD conductance. The physical mechanism of the enhancement is delocalization of a small fraction of system eigenstates caused by coherent coupling of QDs via the electron continuum in the leads.  相似文献   

5.
Density functional theory is employed to investigate the electronic and structural properties of substitutional Si impurities in a (10,0) BN nanotube. For the Si case, the band structure shows a level centered on the Si atom crossing the Fermi energy and no net spin is found. The Si introduces three localized exchange splitted Si levels in the gap. The formation energies show that the Si is likely to be present at N-rich conditions.Received: 9 December 2003, Published online: 28 May 2004PACS: 61.46. + w Nanoscale materials: clusters, nanoparticles, nanotubes, and nanocrystals - 73.22.-f Electronic structure of nanoscale materials: clusters, nanoparticles, nanotubes, and nanocrystals - 85.35.Kt Nanotube devices  相似文献   

6.
A new mechanism of resonance Kondo tunneling via a composite quantum dot (QD) is proposed. It is shown that, owing to the hidden dynamic spin symmetry, the Kondo effect can be induced by a finite voltage eV applied to the contacts at an even number N of electrons in a QD with zero spin in the ground state. As an example, a double QD is considered in a parallel geometry with N=2, which possesses the SO(4) type symmetry characteristic of a singlet-triplet pair. In this system, the Kondo peak of conductance appears at an eV value compensating for the exchange splitting.  相似文献   

7.
In a nano-laser of Si quantum dots (QD), the smaller QD fabricated by nanosecond pulse laser can form the pumping level tuned by the quantum confinement (QC) effect. Coupling between the active centers formed by localized states of surface bonds and the two-dimensional (2D) photonic crystal used to select model can produce a sharp peak at 2.076 eV in the nano-laser. It is interesting to make a comparison between the localized electronic states in gap due to defect formed by surface bonds and the localized photonic states in gap of photonic band due to defect of 2D photonic crystal.  相似文献   

8.
Amorphous silicon quantum dots (a-Si QDs) were grown in a silicon nitride film by plasma enhanced chemical vapor deposition. Transmission electron micrographs clearly demonstrated that a-Si QDs were formed in the silicon nitride. Photoluminescence and optical absorption energy measurement of a-Si QDs with various sizes revealed that tuning of the photoluminescence emission from 2.0 to 2.76 eV is possible by controlling the size of the a-Si QD. Analysis also showed that the photoluminescence peak energy E was related to the size of the a-Si QD, a (nm) by E(eV) = 1.56+2.40/a(2), which is a clear evidence for the quantum confinement effect in a-Si QDs.  相似文献   

9.
A new conception of nano-laser is proposed in which depending on the size of nano-clusters (silicon quantum dots (QD)), the pumping level of laser can be tuned by the quantum confinement (QC) effect, and the population inversion can be formed between the valence band and the localized states in gap produced from the surface bonds of nano-clusters. Here we report the experimental demonstration of nano-laser on silicon quantum dots fabricated by nanosecond pulse laser. The peaks of stimulated emission are observed at 605 nm and 693 nm. Through the micro-cavity of nano-laser, a full width at half maximum of the peak at 693 nm can reach to 0.5 nm. The theoretical model and the experimental results indicate that it is a necessary condition for setting up nano-laser that the smaller size of QD (d < 3 nm) can make the localized states into band gap. The emission energy of nano-laser will be limited in the range of 1.7-2.3 eV generally due to the position of the localized states in gap, which is in good agreement between the experiments and the theory.  相似文献   

10.
We apply unrestricted Hartree-Fock to modelling two systems:
(1)
We calculate the spin structure and addition spectra of small symmetric quantum dots (often called 2D “artificial atoms”), improving the accuracy considerably by including, for the first time, second-order correlation corrections. We compare the results to experiment and to previous numerical works, and find that our spin structure in some cases disagrees with that calculated within mean-field theories, such as Hartree-Fock without correlation corrections, or density-functional theory [C. Sloggett, O.P. Sushkov, Phys. Rev. B 71 (2005) 235326].
(2)
We model the well-known 0.7 anomaly in the conductance of a quantum point contact. We calculate the conductance using direct calculation of scattering phases on a ring, within Hartree-Fock. We observe strong localisation of the Fermi electrons on the barrier, and suggest a mechanism for the observed temperature-dependent conductance anomaly.
  相似文献   

11.
We have investigated the quantum transport through mesoscopic systems with a toroidal carbon nanotube coupled with two metal leads (N-TCN-N) threaded with an ac magnetic flux. The energy shifting takes place by applying the magnetic flux, and this shifting arises from both the dc and ac components of magnetic flux. The dc magnetic flux induces the periodic variation of energy gap E g of the TCN, and the ac magnetic flux component always increases the energy gap. As the photon energy is larger than the energy gap , the electrons in the valence band can jump to the conductance band at zero temperature, and the tunneling current appears for , ( ). The differential conductance and tunneling current display clear effect of ac flux by modifying the current oscillation structures. The photon-assisted tunneling current exhibits stair-like I-V characteristics, and it shows different behaviors for different TCN systems. The magnitude of the current is suppressed by the applied ac flux. We also present the time-dependent current evolution, which is contributed by the oscillating current components.Received: 31 May 2004, Published online: 3 August 2004PACS: 73.40.-c Electronic transport in interface structures - 73.63.Fg Nanotubes - 73.61.Wp Fullerenes and related materials - 73.22.-f Electronic structure of nanoscale materials: clusters, nanoparticles, nanotubes, and nanocrystals  相似文献   

12.
We investigate electron transport inside a ring system composed of a quantum dot (QD) coupled to two Majorana bound states confined at the ends of a one-dimensional topological superconductor nanowire. By tuning the magnetic flux threading through the ring, the model system we consider can be switched into states with or without zero-energy modes when the nanowire is in its topological phase. We find that the Fano profile in the conductance spectrum due to the interference between bound and continuum states exhibits markedly different features for these two different situations, which consequently can be used to detect the Majorana zero-energy mode. Most interestingly, as a periodic function of magnetic flux, the conductance shows 2π periodicity when the two Majorana bound states are nonoverlapping (as in an infinitely long nanowire) but displays 4π periodicity when the overlapping becomes nonzero (as in a finite length nanowire). We map the model system into a QD–Kitaev ring in the Majorana fermion representation and affirm these different characteristics by checking the energy spectrum.  相似文献   

13.
Novel, self-assembled quantum dot (QD) structures suitable for single-dot optical spectroscopy are fabricated by combining III–V molecular beam epitaxy and in situ, atomic layer precise etching. Several growth and etching steps are used to produce lateral InAs/GaAs QD bimolecules and unstrained GaAs/AlGaAs QDs with low surface density . Micro-photoluminescence is used to investigate the ensemble and single-QD properties of GaAs QDs. Single-QD spectra show resolution-limited sharp lines at low excitation and broad “shell-structures” at high excitation intensity.  相似文献   

14.
We have investigated the mesoscopic transport through the system with a quantum dot (QD) side-coupled to a toroidal carbon nanotube (TCN) in the presence of spin-flip effect. The coupled QD contributes to the mesoscopic transport significantly through adjusting the gate voltage and Zeeman field applied to the QD. The compound TCN-QD microstructure is related to the separate subsystems, the applied external magnetic fields, as well as the combination of subsystems. The spin current component Izs is independent on time, while the spin current components Ixs and Iys evolve with time sinusoidally. The rotating magnetic field induces novel levels due to the spin splitting and photon absorption procedures. The suppression and enhancement of resonant peaks, and semiconductor-metal phase transition are observed by studying the differential conductance through tuning the source-drain bias and photon energy. The magnetic flux induces Aharonov-Bohm oscillation, and it controls the tunnelling behavior due to adjusting the flux. The Fano type of multi-resonant behaviors are displayed in the conductance structures by adjusting the gate voltage Vg and the Zeeman field applied to the QD.  相似文献   

15.
16.
The electron transmission through a closed Aharonov-Bohm mesoscopic solid-state interferometer, with a quantum dot (QD) on one of the paths, is calculated exactly for a simple model. Although the conductance is an even function of the magnetic flux (due to Onsager's relations), in many cases one can use the measured conductance to extract both the amplitude and the phase of the "intrinsic" transmission amplitude t(D)=-i|t(D)|e(ialpha(D)) through the "bare" QD. We also propose to compare this indirect measurement with the (hitherto untested) direct relation sin((2)(alpha(D)) identical with |t(D)|(2)/max((|t(D)|(2)).  相似文献   

17.
江兆潭 《中国物理 B》2010,19(7):77307-077307
This paper investigates Kondo transport properties in a quadruple quantum dot (QD) based on the slave-boson mean field theory and the non-equilibrium Green’s function.In the quadruple QD structure one Kondo-type QD sandwiched between two leads is side coupled to two separate QD structures:a single-QD atom and a double-QD molecule.It shows that the conductance valleys and peaks always appear in pairs and by tuning the energy levels in three side QDs,the one-,two-,or three-valley conductance pattern can be obtained.Furthermore,it finds that whether the valley and the peak can appear is closely dependent on the specific values of the interdot couplings and the energy level difference between the two QDs in the molecule.More interestingly,an extra novel conductance peak can be produced by the coexistence of the two different kinds of side QD structures.  相似文献   

18.
Helical quantum states in HgTe quantum dots with inverted band structures   总被引:1,自引:0,他引:1  
We investigate theoretically the electron states in HgTe quantum dots (QDs) with inverted band structures. In sharp contrast to conventional semiconductor quantum dots, the quantum states in the gap of the HgTe QD are fully spin-polarized and show ringlike density distributions near the boundary of the QD and spin-angular momentum locking. The persistent charge currents and magnetic moments, i.e., the Aharonov-Bohm effect, can be observed in such a QD structure. This feature offers us a practical way to detect these exotic ringlike edge states by using the SQUID technique.  相似文献   

19.
It is shown that, in Auger-electron spectra of three-dimensional semimetal graphite and two-dimensional graphite (a zero band-gap semiconductor), an energy gap should be observed between the thresholds (edges) of the forward and inverse processes (threshold gap). In the one-electron approximation, this gap is zero, since the threshold for the Auger spectrum of the forward process is the minimum hole energy in the valence band, while the threshold for the spectrum of the inverse process is the minimum energy of conduction electrons. Inclusion of the electron correlation at the Fermi surface within the quantum-chemical approximation of a single open electron shell for multiplet structures of the restricted Hartree-Fock method makes it possible to determine the threshold gap as 1.5 eV for a 48-atom cyclic model of three-dimensional graphite and as 2.0 eV for a 24-atom model of two-dimensional graphite. The threshold gap does not contain the Fermi energy, in contrast to the Auger spectrum thresholds, where \(\frac{1}{2}(4.0 eV - \varepsilon _F )\) for the forward Auger spectrum (holes) and \(\frac{1}{2}( - 1.1 eV + \varepsilon _F )\) for the inverse spectrum (conduction electrons), the sum of which gives this gap. The results of calculations for the forward Auger spectra of three-dimensional graphite (including the conclusion that electron correlation of holes in the top valence bands is weak in the Auger process) are shown to agree with the experimental data.  相似文献   

20.
Polar c‐axis oriented Zn0.75Cd0.25O/ZnO multiple quantum wells (MQWs), grown by pulsed‐laser deposition (PLD), emitting in the visible spectral range are reported. By applying a low growth temperature of ≈300 °C a large Cd content of 0.25 and abrupt interfaces could be achieved using PLD. The emission energy was tuned from the green to the violet spectral range (2.5 eV to 3.1 eV) by tuning the quantum well thickness. It is determined by the quantum confinement effect and the quantum‐confined Stark effect. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号