首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We use the strategy of diamagnetic substitution for obtaining information on the crystal field effects in paramagnetic rare earth ions using the homologous series of compounds with the diamagnetic tropolonato ligand, Ln(Trp)(HBPz(3))(2), and the paramagnetic semiquinone ligand, Ln(DTBSQ)(HBPz(3))(2), (DTBSQ = 3,5-di-tert-butylsemiquinonato, Trp = tropolonate, HBPz(3)= hydrotrispyrazolylborate) for Ln = Sm(iii), Eu(iii), Gd(iii), Tb(iii), Dy(iii), Ho(iii), Er(iii) or Yb(iii). The X-ray crystal structure of a new form of tropolonate derivative is presented, which shows, as expected, a marked similarity with the structure of the semiquinonate derivative. The Ln(Trp)(HBPz(3))(2) derivatives were then used as a reference for the qualitative determination of crystal field effects in the exchange coupled semiquinone derivatives. Through magnetisation and susceptibility measurements this empirical diamagnetic substitution method evidenced for Er(iii), Tb(iii), Dy(iii) and Yb(iii) derivatives a dominating antiferromagnetic coupling. The increased antiferromagnetic contribution compared to other radical-rare earth metal complexes formed by nitronyl nitroxide ligands may be related to the increased donor strength of the semiquinone ligand.  相似文献   

2.
In the recent years, a wide variety of transition metal complexes with the nitronyl radical ligands have been reported1,2. These systems display the various magnetic behaviors (ferro- or antiferro-magnetism) between the unpaired electrons on the radical ligands and on the paramagnetic metal ion center. However, few theoretical studies on the metal-radical complexes were reported and quite few are known about the nature of the exchange coupling interactions. In this work, we are interested i…  相似文献   

3.
基于DFT-BS方法,在不同泛函方法和基组下计算[CuIIGdIII{pyCO(OEt)py C(OH)(OEt)py}3]2+及3d-Gd异金属配合物的磁耦合常数,结果表明,PBE0/TZVP(Gd为SARC-DKH-TZVP)水平可用于描述其磁学性质。顺磁中心CuII、GdIII与桥联配位氧原子间存在较强的轨道相互作用,其磁轨道主要由GdIII的4fz3、4fz(x2-y2)轨道、CuII的3dx2-y2轨道和桥联配位原子O的p轨道组成。顺磁中心CuII离子以自旋离域作用为主,GdIII离子以自旋极化作用为主,顺磁中心CuII自旋离域作用对桥联氧原子的影响大于顺磁中心GdIII的自旋极化作用。在同结构3d-Gd配合物中,随着MII离子未成对电子的增加,顺磁中心间自旋密度平方差越大,顺磁中心MII和GdIII之间的反铁磁性贡献越大,其磁耦合常数越小。  相似文献   

4.
The synthesis and the X-ray structure of two complexes exhibiting a linear chain of four nickel atoms is reported, following Ni4(mu4-phdpda)4 (1), which had been characterized previously. [Ni4(mu4-Tsdpda)4(H2O)2], where H2Tsdpda is N-(p-toluenesulfonyl)dipyridyldiamine (2), is axially coordinated to two water molecules, at variance with 1. One-electron oxidation of 2 resulted in the loss of the axial ligands, yielding [Ni4(mu4-Tsdpda)4]+, [3]+, which was also structurally characterized. Finally, we report the structure of Ni4(mu4-DAniDANy)4 (4), a complex synthesized starting from the new ligand N,N'-bis-p-anisyl-2,7-diamino-1,8-naphthyridine. Magnetic measurements concluded that 4 is diamagnetic, like 1, whereas 2 is antiferromagnetic (-2J(14) = 80 cm(-)(1), using the Heisenberg Hamiltonian H = -2J(14) S(1).S(4)), as are other axially coordinated chains with an odd number of nickel atoms. DFT calculations are reported on these complexes in order to rationalize their electronic structure and their magnetic behavior. The magnetic properties of the [Ni4]8+ complexes are governed by the electronic state of the Ni(II) atoms, which may be either low-spin (S = 0), or high-spin (S = 1). DFT calculations show that the promotion to high spin of two Ni atoms in the chain, either external or internal, depends on the interplay between axial and equatorial coordination. The synergy between axial coordination and the presence of electron-withdrawing toluenesulfonyl substituents in 2 favors the promotion to the high-spin state of the terminal Ni atoms, thus yielding an antiferromagnetic ground state for the complex. This is at variance with complexes 1 and 4, for which the lowest quintet state results from the promotion to high spin of the internal nickel atoms, together with an important ligand participation, and is destabilized by 9 to 16 kcal mol(-1) with respect to the diamagnetic ground state.  相似文献   

5.
The reaction of P(CH2OH)3 with methyl anthranilate NH2C6H4-2-CO2Me produced the ligand precursor P(CH2NHC6H4-2-CO2Me)3 (1). The reaction of 1 with [Y{N(SiMe3)2}3] produced hexadentate yttrium complex [Y{P(CH2NC6H4-2-CO2Me)3}] (2), in which the metal centre is coordinated by three amido donors and the three carbonyl oxygen atoms of the ester groups. The 31P{1H} NMR spectrum features 1J Y,P=15 Hz, and DFT calculations demonstrate that through-space interaction between the minor lobe of the phosphine lone pair and the yttrium centre allows a large Fermi contact contribution to this spin coupling constant. The EPR spectrum of the analogous paramagnetic Gd complex [Gd{P(CH2NC6H4-2-CO2Me)3}] (3) can be modelled by using a B20 crystal field parameter of +/-0.19 cm(-1). Heterodinuclear complexes were prepared by the reactions of 1 and 3 with [5,10,15,20-tetrakis(4-methoxyphenyl)porphinato]cobalt(II), by binding of the phosphine lone pair to the d(7) cobalt centre. The solid-state EPR spectrum of the heterodinuclear yttrium complex 4 exhibits large superhyperfine coupling to the phosphorus nucleus, indicative of an S=1/2 complex in which the unpaired electron resides in the cobalt dz2 orbital directed at the phosphine donor. The magnetic susceptibility of the heterodinuclear Gd-Co complex 5 demonstrates that through-space antiferromagnetic coupling occurs between unpaired electrons on the gadolinium and cobalt centres.  相似文献   

6.
罗树常 《分子科学学报》2020,(1):62-68,I0005
基于DFT-BS方法,选择不同的泛函方法和基组,研究anti,anti甲酸桥联双核铜配合物的磁学性质.结果表明,在B3P86/TZV水平计算得到顺磁中心Cu(Ⅱ)离子间磁耦合常数为-55.63 cm^-1,与实验值-55.60 cm^-1最接近,可准确描述甲酸桥联双核铜配合物的磁学性质.顺磁中心Cu(Ⅱ)与甲酸根桥联配体间有较强的轨道作用,其磁轨道主要来源于Cu(Ⅱ)离子的3dyz轨道、桥联配体甲酸根离子的离域π键,顺磁中心Cu(Ⅱ)离子为自旋离域机理.在不同桥联模式的甲酸桥联双核铜配合物中,随顺磁中心Cu(1)自旋密度增加,Cu(Ⅱ)离子间的反铁磁性贡献逐渐增加,其磁耦合常数J值逐渐减小.  相似文献   

7.
Four different cation radical salts are obtained upon electrocrystallization of [Cp(2)W(dmit)] (dmit = 1,3-dithiole-2-thione-4,5-dithiolato) in the presence of the BF(4)(-), PF(6)(-), Br(-), and [Au(CN)(2)](-) anions. In these formally d(1) cations, the WS(2)C(2) metallacycle is folded along the S···S hinge to different extents in the four salts, an illustration of the noninnocent character of the dithiolate ligand. Structural characteristics and the charge distribution on atoms, for neutral and ionized complexes with various folding angles, were calculated using DFT methods, together with the normal vibrational modes and theoretical Raman spectra. Raman spectra of neutral complex [Cp(2)W(dmit)] and its salts formed with BF(4)(-), AsF(6)(-), PF(6)(-), Br(-), and [Au(CN)(2)](-) anions were measured using the red excitation (λ = 632.8 nm). A correlation between the folding angle of the metallacycle and the Raman spectroscopic properties is analyzed. The bands attributed to the C═C and C-S stretching modes shift toward higher and lower frequencies by about 0.3-0.4 cm(-1) deg(-1), respectively. The solid state structural and magnetic properties of the three salts are analyzed and compared with those of the corresponding molybdenum complexes. Temperature dependence of the magnetic susceptibility shows the presence of one-dimensional antiferromagnetic interactions in the BF(4)(-), PF(6)(-), and [Au(CN)(2)](-) salts, while an antiferromagnetic ground state is identified in the Br(-) salt below T(Ne?el) = 7 K. Interactions are systematically weaker in the tungsten salts than in the isostructural molybdenum analogs, a consequence of the decreased spin density on the dithiolene ligand in the tungsten complexes.  相似文献   

8.
Cr[(H(3)N-(CH(2))(2)-PO(3))(Cl)(H(2)O)], a rare example of a polar organic-inorganic hybrid material containing Cr(2+), was prepared from CrCl(2), 2-aminoethylphosphonic acid, and urea in water and isolated as light-blue crystals. It crystallizes in the noncentrosymmetric monoclinic space group P2(1), with a = 5.249(1) A, b = 14.133(3) A, c = 5.275(1) A, and beta = 105.55(2) degrees. The inorganic layer of the hybrid network is formed by Cr(II) five-coordinated by three oxygen atoms from the phosphonates and one from the water molecule in a square pyramidal unit, whose apical position is occupied by the Cl(-) ion. Hydrogen bonds are established between the coordinating water molecule and the oxygen atoms of adjacent phosphonate ligands. The inorganic network is interspersed by ethylammonium groups, and the terminal ammonium moiety is linked to the apical Cl(-) ions through hydrogen bonds. Electrostatic interactions as well as hydrogen bonds and the coordinated chlorine atoms ensure the cohesion of the 3D structure. The lattice is polar (lack of inversion center), and this fact determines the magnetic behavior of the compound at low temperatures. The magnetic susceptibility data in the temperature range from 300 to 50 K show Curie-Weiss behavior, with C = 2.716 cm(3) K mol(-1) and the Weiss constant theta = -2.2 K. The corresponding effective magnetic moment of 4.7 mu(B) compares well with the expected value for Cr(2+) in d(4) high-spin configuration. A slight decrease of the chiT product versus T observed at temperatures below 50 K indicates nearest-neighbor antiferromagnetic exchange interactions. On cooling below T = 6 K, the magnetic susceptibility increases sharply up to a maximum at ca. 5 K and then decreases again. Below T = 6 K, hysteresis loops taken at different temperatures show that Cr[(H(3)N-(CH(2))(2)-PO(3))(Cl)(H(2)O)] behaves as a weak ferromagnet with the critical temperature T(N) at 5.5 K. The spin canting is responsible of the long-range magnetic ordering. The values of the coercive field, H(c), and of remnant magnetization, M(r), obtained from the hysteresis loop at T = 4.5 K (the lowest measured temperature) are 30 Oe and 0.08 mu(B), respectively.  相似文献   

9.
The magnetic-structural correlation in magnetic switchable dinickel(II) complex [LNi2(N3)3] (L- is a pyrazolate-based compartmental ligand) has been investigated on the basis of various unrestricted density functional theory (UDFT) combined with the broken symmetry (BS) approach. The calculated exchange coupling constants were in good agreement with experimental result by using the PBE0 method with LANL2DZ basis set. The antiferromagnetic interaction between the Ni(II) ions is mainly due to the large energy difference of the singly occupied molecular orbitals (SOMOs), and the p orbital overlap for nitrogen atoms on azido and the pyrazolate bridge groups. The analysis of the spin density distribution reveals that both the spin polarization and spin delocalization contribute to the antiferromagnetic interaction. Furthermore, the bistable magnetic behavior for this system (strong antiferromagnetic interaction in low-temperature phase and the week antiferromagnetic in high-temperature phase) results from the change of the Ni-NNN-Ni dihedral angle (tau) in mu1,3-N3. The increase of tau is the key role in decreasing the SOMOs energy difference and weakening the antiferromagnetic interaction. Therefore, the abrupt modulation of the magnitude of M-NNN-M dihedral angle tau in the binuclear-azide complex by external perturbations provides new possibilities for the design of molecular magnetic switching devices.  相似文献   

10.
草酸根桥联双核铜(Ⅱ)体系的磁耦合机理   总被引:2,自引:0,他引:2  
应用密度泛函理论,采用对称性破损方法分析了草酸根桥联双核铜(Ⅱ)体系的磁耦合机理。在该双核体系中,两铜(Ⅱ)原子的自旋布居大小相等,符号相反,磁中心间的作用为反铁磁耦合。草酸根桥配体向磁中心的电子转移使得铜(Ⅱ)原子的自旋显著离域,这种离域有利于反铁磁耦合,草酸根桥配体中的碳原子上出现自旋极化。当铜(Ⅱ)原子的配位环境由平面四方形向四面体或四方锥变化时,反铁磁耦合的强度减弱。体系的沿前轨道主要由铜(Ⅱ)原子d轨道和配体原子p轨道构成,这种构成利于草酸根桥配体与磁中心之间的电子转移。  相似文献   

11.
Bis(hexafluoroacetylacetonato(hfac))manganese(II) coordinated with di(4-pyridyl)phenylcarbene, Mn(II)(hfac)(2)[di(4-pyridyl)phenylcarbene] (1a) and its copper analogue Cu(II)(hfac)(2)[di(4-pyridyl)phenylcarbene] (2a) have attracted great interest from the viewpoint of photoinduced magnetism. The complexes 1a and 2a are regarded as the new d-pi-p conjugated systems containing transition metal ion and carbene as spin sources. The magnetic measurements demonstrated antiferromagnetic and ferromagnetic effective exchange interactions for 1a and 2a, respectively. Here, we have performed UHF and UHF plus DFT hybrid calculations (UB3LYP) to elucidate the nature of the through-bond effective exchange interaction between Mn(II) (or Cu(II)) ion and triplet carbene sites in 1a (or 2a) and their model complexes. The natural orbital analysis of the UHF and UB3LYP solutions and CASCI calculations for the simplest models of 1a and 2a are performed to elucidate relative contributions of spin polarization (SP) and spin delocalization (SD) (or superexchange (SE)) interactions for determination of the sign of J(ab) values. Mn(II) carbene complex 1a shows an antiferromagnetic interaction because of the pi-type antiferromagnetic SE effect and the pi-type SP effect, while the positive J(ab) value for Cu(II) carbene complex 2a can be explained by the fact that ferromagnetic SE and SP interactions due to orbital orthogonality are more effective than the sigma-type antiferromagnetic SE interaction. The ligand coordination effects of both 4-pyridylcarbene and hfac play crucial roles for determination of the J(ab) values, but the ligand coordination effect of hfac is more important for the active control of charge or spin density distributions than that of 4-pyridylcarbene. The spin alignment mechanisms of 1a and 2a are indeed consistent with SE plus SP rule, which is confirmed with the shape and symmetry of natural orbitals, together with charge and spin density distributions.  相似文献   

12.
The synthesis, X-ray crystal structure, and magnetic studies of a rare example of organic/inorganic spin hybrid clusters extended in infinite ladder-type chain [Cu(C5F6HO2)2]7(C35H35N5O4)2 ([Cu(hfac)2]7(pyacbisNN)2, 2) formed by the reaction of a high spin nitronylnitroxide biradical C35H35N5O4 (pyacbisNN, 1) and bis(hexafluroacetylacetonate)copper(II) = Cu(hfac)2 are described. Single-crystal X-ray structure analysis revealed the triclinic P1 space group of 2 with the following parameters: a = 10.6191(4) A, b = 19.6384(7) A, c = 21.941(9) A, alpha = 107.111(7) degrees, beta = 95.107(8) degrees, gamma = 94.208(0) degrees , Z = 2. Each repeating unit in 2 carries a centrosymmetric cyclic six spin and a linear five spin cluster with four different copper coordination environments having octahedral and square planar geometries. These clusters are interconnected to form infinite chains which are running along the crystallographic b axis. The magnetic measurements show nearly paramagnetic behavior with very small variations over a large temperature range. The magnetic properties are thus result of complex competitions of many weak ferro- and antiferromagnetic interactions, which appear as small deviations from quite linear mu(eff) vs T dependence at low temperature. At high temperature (300-14 K), antiferromagnetic behavior dominates a little, while at very low temperature (14-2 K), a small increase of mu(eff) was observed. The magnetic susceptibility data are described by the Curie-Weiss law [chi = C/(T - theta)] with the optimal parameters C = 4.32 +/- 0.01 emuK/mol and theta = - 0.6 +/- 0.3 K, where C is the Curie constant and theta is the Weiss temperature.  相似文献   

13.
Different mechanisms of spin pairing in doubly reduced polyoxometalates are studied on the basis of quantum-chemical DFT calculations. Using the nitrosyl derivative of decamolybdate [Mo(10)O(25)(OMe)(6)(NO)](-) (I) as an example, we elucidate an important role of the delocalization of "blue electrons". The charge distributions and spin states are studied for the series of isomers of I differing by positions of methyl groups (modeled by hydrogens). Three different states are calculated for each isomer: spin triplet, spin-restricted singlet, and a broken symmetry state. If the quasihomogeneous distribution of the "blue electrons" density is weakly perturbed by protonation, the delocalization mechanism is responsible for the spin pairing. It is evidenced by the singlet ground state given by a spin-restricted solution. If the perturbation of charge distribution is strong enough and the "blue electrons" density is localized at several metal centers, the exchange mechanism becomes active. A lowest energy broken symmetry state indicates the antiferromagnetic nature of the singlet ground state. The modulation of magnetic interactions in reduced polyoxoanions by external perturbations provides new possibilities for design of molecular magnetic materials.  相似文献   

14.
The solvated yttrium iodide precursors [Y(L)(8)]I(3) (L = DMSO or DMF), prepared in situ by stirring YI(3)(Pr(i)OH)(4) in DMSO or DMF, react with CuI in the presence of NH(4)I to give ionic hetero-metallic species [Y(DMSO)(8)][Cu(2)(mu-I)I(4)] (1) and [Y(DMF)(8)][Cu(4)(mu(3)-I)(2)(mu-I)(3)I(2)] (2) in excellent yields. Re-crystallization of 1 from DMF afforded the mixed-solvate complex [Y(DMSO)(6)(DMF)(2)][CuI(3)][I] (3). Compounds 2 and 3 undergo unique crystal-to-crystal transformation via progressive substitution of DMF by water molecules in a confined, solvent-free environment. Thus, crystals of 3 transform into [Y(DMSO)(6)(H(2)O)(2)][CuI(3)][I] (4), whereas a discrete ion-pair assembly of 2 is first converted into a 1-D zig-zag structure [Y(DMF)(6)(H(2)O)(2)](3+)[Cu(7)(mu(4)-I)(3)(mu(3)-I)(2)(mu-I)(4)(I)](1infinity)(3-) (5) and finally into a 2-D sheet containing mixed-valent copper atoms, [Y(DMF)(6)(H(2)O)(3)](3+)[Cu(I)(7)Cu(II)(2)(mu(3)-I)(8)(mu-I)(6)](2infinity)(3-) (6). The bi- and tetrafurcate H-bonding between water ligands on yttrium and iodides of the Cu-I cluster plays a pivotal role in the evolution of structures 4-6. Formation of a wide range of iodocuprate structures in 1-6, from discrete mono-, di- or tetranuclear units to one- and two-dimensional extended arrays, reflects the influence of solvated yttrium cations on the nuclearity and dimensionality of Cu-I clusters. TG-DTA-MS studies and DFT calculations for these complexes have also been carried out in order to determine their thermal stability and have insight about aforesaid transformations.  相似文献   

15.
The magnetic interaction and spin transfer via phosphorus have been investigated for the tri-tert-butylaminoxyl para-substituted triphenylphosphine oxide. For this radical unit, the conjugation existing between the pi* orbital of the NO group and the phenyl pi orbitals leads to an efficient delocalization of the spin from the radical to the neighboring aromatic ring. This has been confirmed by using fluid solution high-resolution EPR and solid state MAS NMR spectroscopy. The spin densities located on the atoms of the molecule could be probed since (1)H, (13)C, (14)N, and (31)P are nuclei active in NMR and EPR, and lead to a precise spin distribution map for the triradical. The experimental investigations were completed by a DFT computational study. These techniques established in particular that spin density is located at the phosphorus (rho=-15x10(-3) au), that its sign is in line with the sign alternation principle and that its magnitude is in the order of that found on the aromatic C atoms of the molecule. Surprisingly, whereas the spin distribution scheme supports ferromagnetic interactions among the radical units, the magnetic behavior found for this molecule revealed a low-spin ground state characterized by an intramolecular exchange parameter of J=-7.55 cm(-1) as revealed by solid state susceptibility studies and low temperature EPR. The X-ray crystal structures solved at 293 and 30 K show the occurrence of a crystallographic transition resulting in an ordering of the molecular units at low temperature.  相似文献   

16.
The radical cations of piperazine, morpholine, thiomorpholine, and thioxane were investigated by electron paramagnetic resonance (EPR) and electron-nuclear double resonance (ENDOR) spectroscopy in a solid Freon matrix. Optimized geometry and magnetic parameters of the radical cations were calculated using a density functional theory (DFT)/Perdew-Burke-Ernzerhof (PBE) method. Both experimental and theoretical results suggest that all the studied species adopt chair (or distorted chair) conformations. No evidence for the boat conformers with intramolecular sigma-bonding between heteroatoms were obtained. In the cases of morpholine and thioxane, the oxygen atoms are characterized by relatively small spin populations, whereas a major part of spin density is located at N and S atoms, respectively. The thiomorpholine radical cation exhibits nearly equal spin population of N and S atoms. In most cases (except for thioxane), the calculated magnetic parameters agree with the experimental data reasonably well.  相似文献   

17.
Stable radical 2-(6-uradinyl)-4,4,5,5-tetramethyl-4,5-dihydro-1H-imidazole-1-oxyl shows antiferromagnetic spin pairing with 2J/k= -14 K, attributable to a close contact between unpaired spin density on the imidazole-type nitrogen atoms; hydrogen bonds aid dimer formation, but do not appear to play an eletronic role in the magnetic behaviour.  相似文献   

18.
The charge density (CD) of coordination polymer Co3(C8H4O4)4(C4H12N)2(C5H11NO)3 (1) has been determined from multipole modeling of structure factors obtained from single-crystal synchrotron X-ray diffraction measurements at 16 K. The crystal structure formally contains a negatively charged framework with cations and neutral molecules in the voids. However, the CD suggests that the framework is close to neutral, and therefore qualitative conclusions based on formal charge counting, e.g., about guest inclusion properties, will be incorrect. There are considerable differences in the charge distributions of the three unique benzenedicarboxylic acid linkers, which are widely used in coordination polymers. This suggests that the electrostatic properties of coordination polymer cavities, and thereby their inclusion properties, are highly tunable. The electron density topology shows that the tetrahedrally coordinated Co atom has an atomic volume which is 15% larger than that of the octahedrally coordinated Co atom. The crystal structure has both ferromagnetic and antiferromagnetic interactions, but no direct metal-metal bonding is evidenced in the CD. The magnetic ordering therefore takes place through superexchange in the oxygen bridges and the aromatic linkers. Bonding analysis of the experimental CD reveals that two oxygen atoms, O(1) and O(11), have significant covalent contributions to the metal-ligand bonding, whereas all other oxygen atoms have closed-shell interactions with the metals. This indicates that these two oxygen atoms are the key mediators of the magnetic ordering.  相似文献   

19.
The electronic properties of the isostructural series of heterotrinuclear thiophenolate-bridged complexes of the general formula [LFeMFeL](n)(+) with M = Cr, Co and Fe where L represents the trianionic form of the ligand 1,4,7-tris(4-tertbutyl-2-mercaptobenzyl)-1,4,7-triazacyclononane, synthesized and investigated by a number of experimental techniques in the previous work(1), are subjected now to a theoretical analysis. The low-lying electronic excitations in these compounds are described within a minimal model supported by experiment and quantum chemistry calculations. It was found indeed that various experimental data concerning the magnetism and electron delocalization in the lowest states of all seven compounds are completely reproduced within a model which includes the electron transfer between magnetic orbitals at different metal centers and the electron repulsion in these orbitals (the Hubbard model). Moreover, due to the trigonal symmetry of the complexes, only the electron transfer between nondegenerate orbital, a(1), originating from the t(2g) shell of each metal ion in a pseudo-octahedral coordination, is relevant for the lowest states. An essential feature resulting from quantum chemistry calculations, allowing to explain the unusual magnetic properties of these compounds, is the surprisingly large value and, especially, the negative sign of the electron transfer between terminal iron ions, beta'. According to their electronic properties the series of complexes can be divided as follows: (1). The complexes [LFeFeFeL](3+) and [LFeCrFeL](3+) show localized valences in the ground electronic configuration. The strong antiferromagnetic exchange interaction and the resulting spin 1/2 of the ground-state arise from large values of the transfer parameters. (2). In the complex [LFeCrFeL](+), due to a higher energy of the magnetic orbital on the central Cr ion than on the terminal Fe ones, the spin 3/2 and the single unpaired a(1) electron are almost localized at the chromium center in the ground state. (3). The complex [LFeCoFeL](3+) has one ground electronic configuration in which two unpaired electrons are localized at terminal iron ions. The ground-state spin S = 1 arises from a kinetic mechanism involving the electron transfer between terminal iron ions as one of the steps. Such a mechanism, leading to a strong ferromagnetic interaction between distant spins, apparently has not been discussed before. (4). The complex [LFeFeFeL](2+) is characterized by both spin and charge degrees of freedom in the ground manifold. The stabilization of the total spin zero or one of the itinerant electrons depends on beta', i.e., corresponds to the observed S = 1 for its negative sign. This behavior does not fit into the double exchange model. (5). In [LFeCrFeL](2+) the delocalization of two itinerant holes in a(1) orbitals takes place over the magnetic core of chromium ion. Although the origin of the ground-state spin S = 2 is the spin dependent delocalization, the spectrum of the low-lying electronic states is again not of a double exchange type. (6). Finally, the complex [LFeCoFeL](2+) has the ground configuration corresponding to the electron delocalization between terminal iron atoms. The estimated magnitude of the corresponding electron transfer is smaller than the relaxation energy of the nuclear distortions induced by the electron localization at one of the centers, leading to vibronic valence trapping observed in this compound.  相似文献   

20.
The mononuclear radical anionic complex [1-N-methyl-1,10-phenanthrolium][Ni(dmit)_2](dmit = 1,3-dithiole-2-thione-4,5-dithiolate) with a new countercation has been prepared and its crystal structure was determined by X-ray crystallography at 298 and 80 K. In the mononuclear radical anionic complex, the nickel ion assumes a slightly distorted square-planar geometry. There are two and three kinds of intermolecular interactions between adjacent mononuclear radical anionic complexes in the crystal at 298 and 80 K, respectively(i.e., Models A and B at 298 K; and Models C, D and E at 80 K). The variable-temperature magnetic moments indicate a strong antiferromagnetic interaction between the adjacent mononuclear radical anionic complexes, and the theoretical calculations reveal that the stronger antiferromagnetic coupling strength at lower temperature should be contributed to the larger overlap integrals between the short contact atoms. This study is the first to reveal the mechanism of stronger magnetic coupling strength at lower temperature for a mononuclear radical anionic nickel complex with dmit as the ligand.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号