首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
For a transferred arc with a flat anode working at atmospheric pressure in an argon atmosphere, the influence of the gas injector design close to the cathode tip has been systematically studied for arc currents below 300 A, gas flowrates between 5 and 60 slm, and anode-cathode distances between 10 and 46 mm. Two types of injector configurations hare been studied: a cylindrical one with its wall parallel to the cathode axis and a conical one with the same cone angle as that of the cathode tip. The arc temperature was measured using flit, absolute intensity of ArI and ArII lines. Beside the roltagc and arc current, the losses at the cathode and at the anode were continuously recorded. An elliptic model was used to calculate the flow velocity, the temperature, and the current density close to the cathode and in the arc column. This model was either laminar or turbulent (K - ), with the empirical constants being functions of the Reynolds nunther of turbulence. A cathode sheath with nonequilibrium conditions was used to obtain accurate cathode boundary conditions. Experiments and modeling hart shown the benefits of using conical injectors which constrict drasfically the plasma_ flow and enhance the gas velocity and the current density, thus increasing the heat flux to the anode. With the cylindrical injector, recirculations close to the cathode lip modify deeply its heating and reduce the plasma jet constriction: velocities and temperatures are lower when the recirculation velocity is higher. This results in lower heat fluxes to the anode compared to the conical injector.  相似文献   

2.
Heat Generation and Particle Injection in a Thermal Plasma Torch   总被引:1,自引:0,他引:1  
The operation of plasma guns used for plasma spraying involves a continuous movement of the anode arc root. The resulting fluctuations of voltage and thermal energy input introduce an undesirable element in the spray process. This paper deals with the effects of these arc instabilities on the plasma jet, and the behavior of particles injected in the flow. The first part refers to the formation of the plasma jet. Measurements show that the static behavior of the arc depends strongly upon the plasma-forming gas mixture, especially the mass flow rate, of the heavy gas, injection mode, nozzle diameter, and arc current. These parameters control the electric field in the arc column, the arc length, its stability, and the gas velocity and temperature. The dynamic behavior of the arc is examined to determine how the tempeature and velocity of the plasma gas vary with voltage variations. Relationships between the gas velocity at the nozzle exit and the lifetime of the arc roots, and the independent operating parameters of the gun can be established from a dimensional analysis. The second part discusses the interaction between the plasma jet and the particles injected into the flow. The parameters controlling particle injection and trajectory are examined to determine how injection velocity must vary with particle size and density to achieve a given trajectory. The effect of the transverse injection of the powder carrier gas is investigated using a 3-D computational fluid dynamics code. Finally, the effect of the jet fluctuations on particle trajectory is studied under the assumption that the jet velocity follows the voltage variation. The result is a continuous variation of the particle spray jet position in the flow. Experimental observations confirm the model predictions.  相似文献   

3.
A special bi-anode plasma torch that can change the anode arc root position without changing working gas flow rate has been developed to investigate the effect of anode arc root position on the behavior of the plasma jet. It has two nozzle-shaped anodes at different axial distances from the cathode tip. The arc root can be formed at anodes either close to the cathode tip (anode I) or far away from it (anode II) to obtain different attachment positions and arc voltages. The characteristics of pure argon plasma jets operated in different anode modes were measured in the field free region by using an emalpy probe, and the thermal efficiency of the torch was determined by measuring the temperature differences between cooling water flowing in and out of the torch. The results show that compared with the normal arc operated in anode I mode, the elongated arc operated in anode II mode significantly reduced the plasma energy loss inside the torch, resulting in a higher temperature and a higher velocity of the plasma jet in the field free region.  相似文献   

4.
Numerical modeling of free burning arcs and their electrodes is useful for clarifying the heat transfer phenomena in the welding process and to elucidate those effects which determine the weld penetration. This paper presents predictions for a stationary welding process by the free-burning argon arc. The whole region of the welding process, namely, tungsten cathode, arc plasma and stainless steel anode is treated in a unified numerical model to take into account the close interaction between the arc plasma and the molten anode. The time dependent development of two-dimensional distributions of temperature and velocity, in the whole region of the welding process, are predicted at a current of 150 A. The weld penetration geometry as a function of time is thus predicted. It is shown also that different surface tension properties can change the direction of re-circulatory flow in the molten anode and dramatically vary the weld penetration geometry.  相似文献   

5.
Determination of the arc-root position in a DC plasma torch   总被引:4,自引:0,他引:4  
The behavior of an arc operated in the nontransferred mode with a conical-shaped cathode and a nozzle-shaped anode is studied by applying general tyro-dimensional conservation equations and auxiliary relations for the simulation of arc channel flows. The position of the arc-root attachment at the anode surface is determined by using Steenbeck's minimum principle, which postulates a minimum arc voltage for a given current and certain given boundary conditions. The overall effects of the anode-arc root on the plasma flow are, studied by comparing the results with those of the transferred mode of operation. Specific arc-channel diameters are chosen in the simulation in order to verify flit, numerical model through comparisons with experimental results. The results show that Steenbeck's minimum principle is useful for determining the position of the arc-root attachment at the anode surface. Application of this method for control of the arc-anode attachment may be valuable in the design and operation of plasma spray torches to avoid jet instabilities.  相似文献   

6.
A specially designed plasma chamber was constructed to study the operating characteristics of a dc plasma-transferred arc of argon, struck between a fluid convective cathode and a water-cooled anode. The arc voltage increased markedly with arc length and with an increase in the inlet velocity of the argon flow past the cathode tip, and much less with an increase in current. Radiation from the plasma column to the chamber walls and transfer of energy to the anode were the two principal modes of transfer of the arc energy. The former was dominant in the case of long arcs and at high inlet argon velocities. At the anode, the major contribution was from electron transfer, which occurred on a very small area of the anode (~5 mm in diameter). Convective heat transfer from the plasma was somewhat less. In all cases, the arc energy contributions to cathode cooling and to the exit gas enthalpy were small. From total heat flux and radiative heat transfer measurements, it was estimated that the plasma temperature just above the anode was in the range 10,000–12,000 K. Preliminary experiments with an anode consisting of molten copper showed that the arc root was no longer fixed but moved around continuously. The arc was othwewise quite stable, and its operating characteristics differed little from those reported for solid anodes, in spite of the greater extent of metal vaporization.  相似文献   

7.
Experimental studies of a free-burning, high-intensity argon arc operated at 800 Torr with a solid, molten, or resolidified copper anode demonstrate that the cathode region is not affected by Cu vapor from the anode. Also Cu vapor concentrations in the arc core (beyond 1 mm from the anode surface) are negligible. In contrast, there is a strong effect of the Cu vapor on the anode region of the arc. The arc fringes become electrically conducting due to the presence of Cu vapor, resulting in a flattening of the current density distribution and a corresponding drop of the temperature in the arc core. At the same time, the overall arc voltage shows a slight drop (<1 V). In the case of the resolidified anode, the overall arc voltage increases, which seems to be associated with the distribution of the stagnation flow in front of the anode due to a dip in the center of the anode.  相似文献   

8.
A free-burning, high-intensity argon arc at atmospheric pressure was modeled during the evaporation of copper vapor from the anode to study the impact of the vapor to the entire plasma region. A uniform and a Gaussian radial velocity distribution are adopted for the copper vapor at the anode boundary with a net mass flow rate known from the experiment. The effect of both velocity distributions on the temperature, mass flow, current flow, and Cu concentration was studied for the entire plasma region. The cathode region is not affected by the evaporated copper, and the Cu vapor concentration in the arc core is negligible.  相似文献   

9.
The present modeling of a free-burning argon arc accounts for copper vapor contamination from the anode. Simulations are made for an atmospheric arc that has a length of 10 mm and an electric current of 200 amps. Predicted results for two different anode evaporation rates are compared to those from a pure argon arc with no copper vapor contamination. Copper vapor concentration, temperature, electric potential, and current density profiles are presented. Included in this analysis are radiation losses from both the argon and copper by using recently calculated net emission coefficients. It was found that evaporation of copper from the anode results in a cooling of the arc in a region close to the anode, but has an insignificant influence on the arc close to the cathode. Due to the arc flow characteristics most of the copper vapor tends to be confined to the anode region.  相似文献   

10.
A d.c. arc source sheathed by three independent gas streams is described. A mixed flow of argon at 7 1 min-1 and oxygen at 3 1 min-1 is used to support the arc plasma and isolate it from the surrounding air, while separate streams of argon are used to sheathe the base of the anode and lower part of the cathode counter-electrode. The anode holds about 40 mg of a sample mixture. The source is stable when operated with currents up to 20 A, cyanogen emission is eliminated, and the limits of detection of a wide range of trace elements in soils and rocks are better than with a cathode-layer arc in air.  相似文献   

11.
In this paper the behavior of an arc in a transferred-arc plasma reactor with a converging wall geornetrr and flow through a hollow cathode is investigated numerically with emphasis on the fluid dynamics. The general conservation equations and auxiliary relations for the calculation domain are established based on reasonable assumptions Then, the coupled nonlinear differential equations are solved with suitable boundary conditions and temperature-dependent argon plasma properties at atmospheric pressure, by employing an efficient finite-difference method. The results, for a hollow cathode geornetrr with low injection flow rates, clear/y demonstrate the existence of the Maecker elect which is responsible Joy the formation of two recirculation zones. As the plasma gas flow rate is increased, the downstream recirculation zoner is swept away leaving only an upstream recirculation zone.  相似文献   

12.
A coalesced high-intensity dc discharge is maintained between three cathodes and a single anode, stabilized by using resistors on each cathode leg. Jets of plasma gas are produced from either the cathode area or the anode area of the device. Cathode jets are generated by the self-induced pumping at the cathode tips and augmented by central gas injection. Arc voltage-current characteristics show classical convection-stabilized arc behavior. Anode heat transfer rates may be substantially increased by central gas injection toward the anode. Temperature fields in the coalesced, axially symmetric portion of the arc are determined spectrometrically and compared to those of a classical single-cathode free-burning arc.  相似文献   

13.
Two-dimensional modeling results are presented concerning the subsonic–supersonic flow and heat transfer within a DC plasma torch used for low-pressure (or soft vacuum) plasma spraying. The so-called fictitious anode method is used in the modeling in order to avoid inclusion of the complex three-dimensional effects near the anode arc root and also to avoid the forced heating of all the incoming cold gas stream by the arc. A nonorthogonal boundary-conforming grid, nonstaggered variable arrangement and the all-speed SIMPLE algorithm are employed for the solution of the governing equations, including gas viscous effects, temperature-dependent properties, and compressible effects. Good agreement of the predictions with available results for a few benchmarked compressible flow problems shows that the new version of the FAST-2D program can be employed for the present plasma flow modeling. Temperature, axial velocity, Mach number, and static pressure contours, and streamlines within the DC arc plasma torch are presented to show the flow and heat transfer characteristics. The flow transits gradually from upstream subsonic regime into downstream supersonic regime with the subsonic–supersonic transition within the cylindrical segment of the torch nozzle. Additional numerical tests show that gas viscosity and Lorentz force have only a slight effect on the plasma flow.  相似文献   

14.
The present study describes an electrocoagulation process for the removal of remazol yellow G from dye solutions using Iron as the anode and Steel as the cathode. Pseudo-first-order, pseudo-second-order and intraparticle diffusion models were used to analyze the kinetic data obtained at different concentrations in different conditions. The adsorption kinetics was well described by the pseudo-second-order kinetic model.  相似文献   

15.
A previously established model has been applied to a free-burning high-intensity argon arc at elevated pressures for simulating the situations experienced, for example, in plasma processing or in underwater welding. With the calculated thermodyanmic and transport properties and appropriate boundary conditions, solutions of the entire arc are obtained with exception of the electrode sheath regions. The results show that the arc contracts as the pressure increases. As a consequence of this contraction, the current density, the enthalpy flux, and the voltage drop increase also while the velocity of the induced cathode jet decreases.  相似文献   

16.
Nanopowders of metals and metal oxides have been produced using an arc operated between a refractory rod anode and a hollow cathode (J. Haidar in A method and apparatus for production of material vapour, Australian Patent No. 756273, 1999). the arc attachment to the anode is through a small region of molten metal located at the tip of the rod anode. Heat from the arc evaporates the molten metal and the vapour is passed through the arc plasma before condensing into sub-micron particles downstream of the cathode. A precursor metal is continuously fed onto the tip of the anode to maintain the molten metal region and compensate for losses of materials due to evaporation. The particle size of the produced powder depends on the pressure in the arc chamber and for production of nanoparticles in the range below 100 nm we use a pressure of 100 torr. Aluminium has been used as a precursor material, leading to production of aluminium metal nanopowders when the arc is operated in argon and to aluminium oxide nanopowders for operation in air. For operation in air, the products are made of γ-Al2O3.  相似文献   

17.
D.C. plasma jets temperature and velocity distributions as well as the arc root fluctuations at the anode were studied for Ar-H2 (25 vol%) plasma forming gases. The parameters were the arc current up to 700 A, the total gas flow rate up to 100 slm, and the nozzle diameter which was varied from 6 to 10 mm. The trajectories of partially stabilized zirconia particles into the jet were studied by a 2D laser imaging technique and two fast (100 ns) two color pyrometers. The results have revealed the difficulty to inject small particles into the plasma flow since most were found to by-pass the jet rather than penetrate it. The results also show the broad trajectory distribution within the jet and the influence of the arc root fluctuations on the mean particle trajectory distribution within the jet. Beside the measurements of the particle surface temperature and velocity distributions in flight, the particle flattening and the cooling of the resulting splats were studied statistically for single particles all over the spray cone. Such studies have emphasized the drastic influence of the substrates or previously deposited layers temperature on the contact between them and the splats. At 200–300°C this contact is excellent (cooling rates of the order of 100 K/μs for 1 μm thick splats) and it results in a columnar growth within the splats and the layered splats of a bead (up to 500 layered splats). This growth can be observed through passes provided the bead surface temperature has not cooled too much (a few tens of K) before the next bead covers it. A/C values up to 60 MPa were achieved with PSZ coatings. The effect of impact velocity of the particles, of substrate preheating temperature, of relative movments torch to substrate, of substrate oxidation on A/C values and splat formation were also studied.  相似文献   

18.
The influence of two nozzle geometries and three process parameters (arc current, arc length and plasma sheath gas flow rate) on the energy distribution for an argon transferred arc is investigated. Measurements are reported for a straight bore cylindrical and for a convergent nozzle, with arc currents of 100 A and 200 A and electrode gaps of 10 mm and 20 mm. These correspond to typical operating parameters generally used in plasma transferred arc cutting and welding operations. The experimental set up consisted of three principal components: the cathode-torch assembly, the external, water-cooled anode, and the reactor chamber. For each set of measurements the power delivered to each system component was measured through calorimetric means, as function of the arc’s operating conditions. The results obtained from this study show that the shape of the cathode torch nozzle has an important influence on arc behaviour and on the energy distribution between the different system components. A convergent nozzle results in higher arc voltages, and consequently, in higher powers being generated in the discharge for the same applied arc current, when compared to the case of a straight bore nozzle. This effect is attributed to the fluidynamic constriction of the arc root attachment, and the consequential increase in the arc voltage and thus, in the Joule heating. The experimental data so obtained is compared with the predictions of a numerical model for the electric arc, based on the solution of the Navier–Stokes and Maxwell equations, using the commercial code FLUENT©. The original code was enhanced with dedicated subroutines to account for the strong temperature dependence of the thermodynamic and transport properties under plasma conditions. The computational domain includes the heat conduction within the solid electrodes and the arc-electrode interactions, in order to be able to calculate the heat distribution in the overall system. The level of agreement achieved between the experimental data and the model predictions confirms the suitability of the proposed, “relatively simple” model as a tool to use for the design and optimization of transferred arc processes and related devices. This conclusion was further supported by spectroscopic measurements of the temperature profiles present in the arc column and image analysis of the intensity distribution within the arc, under the same operating conditions.  相似文献   

19.
Electrokinetic flow of a suspension of erythrocytes (red blood cells, RBCs) in 20 num cylindrical fused-silica capillaries is examined in the present work. Flow direction anomalies are observed experimentally and tentatively explained by the development of a pH gradient between the cathode well and the anode well due to electrolysis reactions at the electrodes. This pH gradient alters the local zeta potentials of both the capillary and the RBC and thus the local electroendosmotic liquid flow (EOF) velocities and RBC electrophoretic (EP) velocities. The two velocities are opposite in direction but with EOF dominating such that the RBC moves toward the cathode, opposite to the anode migration observed in bulk conditions. The opposing zeta potentials also lead to RBC aggregation at the anode end for low fields less than 25 V/cm. As the electroendosmotic velocity decreases at the anode end due to decreasing pH, pressure-driven back flow develops to oppose the original EOF at the remaining portions of the capillary ensuring constant fluid flux. When the anode EOF velocity is smaller in magnitude than the EP velocity, reversal of blood cell transport is observed after a short transient time in which a pH gradient forms. RBC velocities and pH dependencies on electric field and MgCl(2) concentration are presented along with data showing the accumulation of charge separation across the capillary. Also, a short-term solution to the pH gradient formation is presented that could help thwart development of pH gradients in micro-devices at lower voltages.  相似文献   

20.
A numerical analysis of the influence of different nozzle configurations on the plasma flow characteristics inside D.C plasma torches is presented to provide an advanced nozzle design basis for plasma spraying torches. The assumption of steady-state, axis-symmetric, local thermodynamic equilibrium, and optically thin plasma is adopted in a two-dimensional modeling of plasma flow inside the plasma torch. The PHOENICS software is used for solving the governing equations, i.e. the conservation equations of mass, momentum, and energy along with the equations describing the K-epsilon model of turbulence. The calculated arc voltages are consistent with the experimental results when arc current, gas inflow rate, and working gas are the same as the experimental parameters. Temperature, axial velocity contours inside plasma torches, profiles along the torch axis and profiles at the outlet section are presented to show the plasma flow characteristics. Comparisons are made among those torches. The results show that torches with different anode nozzle configurations produce different characteristics of plasma flows, which suggest some important ideas for the advanced nozzle design for plasma spraying. In order to validate the model and to show its level of predictivity, a comparison of the model with experimental results encountered in the literature is presented in the last part.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号