首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
2.
Streptomyces diastaticus var. 108, a newly isolated strain, was recently characterized as a producer of two polyene macrolide antibiotics (rimocidin and CE-108), and the biosynthetic gene cluster was partially characterized. When the producer strain was genetically modified by transformation with some engineered SCP2*-derived vectors carrying the ermE gene, two previously uncharacterized macrolides were detected in the fermentation broth of the recombinant strain and chemically characterized as the amides of the parental polyene carboxylic acids. The biological activity and some in vitro toxicity assays showed that this chemical modification resulted in pharmaceuticals with improved biological properties compared with the parental products.  相似文献   

3.
4.
5.
6.
7.
8.
In the course of screening for apoptosis-inducing agents, chloptosin (1) was isolated from the culture broth of Streptomyces. The dumbbell-type structure of the dimeric cyclohexapeptide consisting of D-valine, (3S)- and (3R)-piperazic acids, O-methyl-L-serine, D-threonine, and (2S,3aR,8aR)-6-chloro-3a-hydroxy-2,3,3a, 8a-hexahydropyrrolo[2,3-b]indole-2-carboxylic acid was elucidated by spectroscopic and chemical degradation studies. The amino acid components in each cyclohexapeptide domain were presented in alternating R and S configurations. Chloptosin (1) was found to induce apoptotic activity in apoptosis-resistant human pancreatic adenocarcinoma cell line AsPC-1 and showed a strong antimicrobial activity against Gram-positive bacteria including methicillin-resistant Staphylococcus aureus.  相似文献   

9.
Cladoniamides A-G (3- 9) have been isolated from cultures of Streptomyces uncialis, and their structures have been elucidated by a combination of spectroscopic analysis and an X-ray diffraction analysis of cladoniamide A (3). The cladoniamides have unprecedented rearranged and degraded alkaloid skeletons with putative biogenetic origins from indolocarbazole precursors. Cladoniamide G (9) is cytotoxic to MCF-7 cells in vitro at 10 microg/mL.  相似文献   

10.
11.
12.
13.
Platensimycin and platencin are novel natural product antibiotics that inhibit bacterial growth by inhibiting condensing enzymes FabF and FabF/FabH of fatty acid biosynthesis pathways, respectively. Continued search for the natural congeners of these compounds led to the isolation of platensic acid, the free C-17 tetracyclic enoic acid, and platensimide A, a 2,4-diaminobutyric acid amide derivative. Isolation, structure, semisynthesis, and activity of these compounds are described.  相似文献   

14.
An aminopeptidase gene fragment was isolated from a keratin-degrading strain, Streptomyces fradiae var. k11, by PCR amplification using a degenerate primer set designed based on the partial amino acid sequence of the native enzyme. The gene, designated sfap, encoded a polypeptide of 461 amino acids comprised of three domains: a signal peptide, a mature region, and a C-terminal propeptide. The aminopeptidase, SFAP, had highest amino acid sequence identity (79%) with a putative aminopeptidase from Streptomyces griseus subsp. griseus NBRC 13350. The gene with and without C-terminal propeptide was successfully overexpressed in Escherichia coli BL21 (DE3), and the gene without C-terminal propeptide encoded a functional enzyme. Purified recombinant SFAP exhibited optimal activity at pH 8.0 and 60 °C, and retained >60% peak activity over a broad range of temperature. The enzyme was thermal and pH stable, and showed metalloprotease characteristics, which was inhibited by EDTA but activated by Ca2+ and Co2+. This is the first study to report the gene cloning and expression of a leucine aminopeptidase from S. fradiae.  相似文献   

15.
16.
The ion-imprinted magnetic chitosan resins (IMCR) prepared using U(VI) as a template and glutaraldehyde as a cross-linker showed higher adsorption capacity and selectivity for the U(VI) ions compared with the non-imprinted magnetic chitosan resins (NIMCR) without a template. The results showed that the adsorption of U(VI) on the magnetic chitosan resins was affected by the initial pH value, the initial U(VI) concentration, as well as the temperature. Both kinetics and thermodynamic parameters of the adsorption process were estimated. These data indicated an exothermic spontaneous adsorption process that kinetically followed the second-order adsorption process. Equilibrium experiments were fitted in Langmuir, Freundlich, and Dubinin-Radushkevich adsorption isotherm models to show very good fits with the Langmuir isotherm equation for the monolayer adsorption process. The monolayer adsorption capacity values of 187.26 mg/g for IMCR and 160.77 mg/g for NIMCR were very close to the maximum capacity values obtained at pH 5.0, temperature 298 K, adsorbent dose 50 mg, and contact time 3 h. The selectivity coefficient of uranyl ions and other metal ions on IMCR indicated an overall preference for uranyl ions. Furthermore, the IMCR could be regenerated through the desorption of the U(VI) ions using 0.5 M HNO(3) solution and could be reused to adsorb again.  相似文献   

17.
To study the biosynthesis of the pseudotrisaccharide antibiotic, validamycin A (1), a number of potential precursors of the antibiotic were synthesized in (2)H-, (3)H-, or (13)C-labeled form and fed to cultures of Streptomyces hygroscopicus var. limoneus. The resulting validamycin A from each of these feeding experiments was isolated, purified and analyzed by liquid scintillation counting, (2)H- or (13)C NMR or selective ion monitoring mass spectrometry (SIM-MS) techniques. The results demonstrate that 2-epi-5-epi-valiolone (9) is specifically incorporated into 1 and labels both cyclitol moieties. This suggests that 9 is the initial cyclization product generated from an open-chain C(7) precursor, D-sedoheptulose 7-phosphate (5), by a DHQ synthase-like cyclization mechanism. A more proximate precursor of 1 is valienone (11), which is also incorporated into both cyclitol moieties. The conversion of 9 into 11 involves first epimerization to 5-epi-valiolone (10), which is efficiently incorporated into 1, followed by dehydration, although a low level of incorporation of 2-epi-valienone (15) is also observed. Reduction of 11 affords validone (12), which is also incorporated specifically into 1, but labels only the reduced cyclitol moiety. The mode of introduction of the nitrogen atom linking the two pseudosaccharide moieties is not clear yet. 7-Tritiated valiolamine (8), valienamine (2), and validamine (3) were all not incorporated into 1, although each of these amines has been isolated from the fermentation, with 3 being most prevalent. Demonstration of in vivo formation of [7-(3)H]validamine ([7-(3)H]-3) from [7-(3)H]-12 suggests that 3 may be a pathway intermediate and that the nonincorporation of [7-(3)H]-3 into 1 is due to a lack of cellular uptake. We thus propose that 3, formed by amination of 12, and 11 condense to form a Schiff base, which is reduced to the pseudodisaccharide unit, validoxylamine A (13). Transfer of a D-glucose unit to the 4'-position of 13 then completes the biosynthesis of 1. Other possibilities for the mechanism of formation of the nitrogen bridge between the two pseudosaccharide units are also discussed.  相似文献   

18.
BACKGROUND: The post-polyketide synthase biosynthetic tailoring of polyene macrolides usually involves oxidations catalysed by cytochrome P450 monooxygenases (P450s). Although members from this class of enzymes are common in macrolide biosynthetic gene clusters, their specificities vary considerably toward the substrates utilised and the positions of the hydroxyl functions introduced. In addition, some of them may yield epoxide groups. Therefore, the identification of novel macrolide monooxygenases with activities toward alternative substrates, particularly epoxidases, is a fundamental aspect of the growing field of combinatorial biosynthesis. The specific alteration of these activities should constitute a further source of novel analogues. We investigated this possibility by directed inactivation of one of the P450s belonging to the biosynthetic gene cluster of an archetype polyene, pimaricin. RESULTS: A recombinant mutant of the pimaricin-producing actinomycete Streptomyces natalensis produced a novel pimaricin derivative, 4,5-deepoxypimaricin, as a major product. This biologically active product resulted from the phage-mediated targeted disruption of the gene pimD, which encodes the cytochrome P450 epoxidase that converts deepoxypimaricin into pimaricin. The 4,5-deepoxypimaricin has been identified by mass spectrometry and nuclear magnetic resonance following high-performance liquid chromatography purification. CONCLUSIONS: We have demonstrated that PimD is the epoxidase responsible for the conversion of 4,5-deepoxypimaricin to pimaricin in S. natalensis. The metabolite accumulated by the recombinant mutant, in which the epoxidase has been knocked out, constitutes the first designer polyene obtained by targeted manipulation of a polyene biosynthetic gene cluster. This novel epoxidase could prove to be valuable for the introduction of epoxy substituents into designer macrolides.  相似文献   

19.
An unusual alkaloid with a 2-azaquinone-phenylhydrazone structure, katorazone (1), and other metabolites were isolated from the ethyl acetate extract of Streptomyces sp. IFM 11299. The chemical structure of katorazone (1) was elucidated by 1D and 2D NMR analyses together with HR-ESI mass spectrometry. Katorazone (1) showed a synergistic effect in combination with TRAIL and decreased the viability of human gastric adenocarcinoma (AGS) cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号