首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Let X be an RD-space, i.e., a space of homogeneous type in the sense of Coifman and Weiss, which has the reverse doubling property. Assume that X has a dimension n. For α∈ (0, ∞) denote by Hαp(X ), Hdp(X ), and H?,p(X ) the corresponding Hardy spaces on X defined by the nontangential maximal function, the dyadic maximal function and the grand maximal function, respectively. Using a new inhomogeneous Calder′on reproducing formula, it is shown that all these Hardy spaces coincide with Lp(X ) when p ∈ (1, ∞] a...  相似文献   

2.
Denote by γ the Gauss measure on ℝ n and by ${\mathcal{L}}${\mathcal{L}} the Ornstein–Uhlenbeck operator. In this paper we introduce a Hardy space \mathfrakh1g{{\mathfrak{h}}^1}{{\rm \gamma}} of Goldberg type and show that for each u in ℝ ∖ {0} and r > 0 the operator (rI+L)iu(r{\mathcal{I}}+{\mathcal{L}})^{iu} is unbounded from \mathfrakh1g{{\mathfrak{h}}^1}{{\rm \gamma}} to L 1γ. This result is in sharp contrast both with the fact that (rI+L)iu(r{\mathcal{I}}+{\mathcal{L}})^{iu} is bounded from H 1γ to L 1γ, where H 1γ denotes the Hardy type space introduced in Mauceri and Meda (J Funct Anal 252:278–313, 2007), and with the fact that in the Euclidean case (rI-D)iu(r{\mathcal{I}}-\Delta)^{iu} is bounded from the Goldberg space \mathfrakh1\mathbbRn{{\mathfrak{h}}^1}{{\mathbb{R}}^n} to L 1 n . We consider also the case of Riemannian manifolds M with Riemannian measure μ. We prove that, under certain geometric assumptions on M, an operator T{\mathcal{T}}, bounded on L 2 μ, and with a kernel satisfying certain analytic assumptions, is bounded from H 1 μ to L 1 μ if and only if it is bounded from \mathfrakh1m{{\mathfrak{h}}^1}{\mu} to L 1 μ. Here H 1 μ denotes the Hardy space introduced in Carbonaro et al. (Ann Sc Norm Super Pisa, 2009), and \mathfrakh1m{{\mathfrak{h}}^1}{\mu} is defined in Section 4, and is equivalent to a space recently introduced by M. Taylor (J Geom Anal 19(1):137–190, 2009). The case of translation invariant operators on homogeneous trees is also considered.  相似文献   

3.
Let H2{\mathcal H_2} denote the set of even integers n \not o 1 mod 3{n \not\equiv 1 \pmod 3} . We prove that when HX 0.33, almost all integers n ? H2 ?(X, X + H]{n \in \mathcal H_2 \cap (X, X + H]} can be represented as the sum of a prime and the square of a prime. We also prove a similar result for sums of three squares of primes.  相似文献   

4.
Let X = (X, d,μ) The purpose of this paper is to be a space of homogeneous type in the sense of Coifman and Weiss. generalize the definition of Hardy space H^P(X) and prove that the generalized Hardy spaces have the same property as H^P(X). Our definition includes a kind of Hardy- Orlicz spaces and a kind of Hardy spaces with variable exponent. The results are new even for the R^n case. Let (X, δ, μ) be the normalized space of (X, d, μ) in the sense of Macias and Segovia. We also study the relations of our function spaces for (X, d, μ) and (X, δ,μ).  相似文献   

5.
We define nonnegative quasi-nearly subharmonic functions on so called locally uniformly homogeneous spaces. We point out that this function class is rather general. It includes quasi-nearly subharmonic (thus also subharmonic, quasisubharmonic and nearly subharmonic) functions on domains of Euclidean spaces \mathbbRn{{\mathbb{R}}^n}, n ≥ 2. In addition, quasi-nearly subharmonic functions with respect to various measures on domains of \mathbbRn{{\mathbb{R}}^n}, n ≥ 2, are included. As examples we list the cases of the hyperbolic measure on the unit ball B n of \mathbbRn{{\mathbb{R}}^n}, the M{{\mathcal{M}}}-invariant measure on the unit ball B 2n of \mathbbCn{{\mathbb{C}}^n}, n ≥ 1, and the quasihyperbolic measure on any domain D ì \mathbbRn{D\subset {\mathbb{R}}^n}, D 1 \mathbbRn{D\ne {\mathbb{R}}^n}. Moreover, we show that if u is a quasi-nearly subharmonic function on a locally uniformly homogeneous space and the space satisfies a mild additional condition, then also u p is quasi-nearly subharmonic for all p > 0.  相似文献   

6.
Let G{{\mathcal G}} be a group, Λ a G{{\mathcal G}}-graded Artin algebra and gr(Λ) denote the category of finitely generated G{{\mathcal G}}-graded Λ-modules. This paper provides a framework that allows an extension of tilting theory to Db(gr(L)){{\mathcal D}}^b(\rm gr(\Lambda)) and to study connections between the tilting theories of Db(L){{\mathcal D}}^b(\Lambda) and Db(gr(L)){{\mathcal D}}^b(\rm gr(\Lambda)). In particular, using that if T is a gradable Λ-module, then a grading of T induces a G{{\mathcal G}}-grading on EndΛ(T), we obtain conditions under which a derived equivalence induced by a gradable Λ-tilting module T can be lifted to a derived equivalence between the derived categories Db(gr(L)){{\mathcal D}}^b(\rm gr(\Lambda)) and Db(gr(EndL(T))){{\mathcal D}}^b(\rm gr(\rm End_{\Lambda}(\textit T))).  相似文献   

7.
For a germ of a smooth map f from \mathbb Kn{{\mathbb K}^n} to \mathbb Kp{{\mathbb K}^p} and a subgroup GWq{{{G}_{\Omega _q}}} of any of the Mather groups G for which the source or target diffeomorphisms preserve some given volume form Ω q in \mathbb Kq{{\mathbb K}^q} (q = n or p) we study the GWq{{{G}_{\Omega _q}}} -moduli space of f that parameterizes the GWq{{{G}_{\Omega _q}}} -orbits inside the G-orbit of f. We find, for example, that this moduli space vanishes for GWq = AWp{{{G}_{\Omega _q}} ={{\mathcal A}_{\Omega _p}}} and A{{\mathcal A}}-stable maps f and for GWq = KWn{{{G}_{\Omega _q}} ={{\mathcal K}_{\Omega _n}}} and K{{\mathcal K}}-simple maps f. On the other hand, there are A{{\mathcal A}}-stable maps f with infinite-dimensional AWn{{{\mathcal A}_{\Omega _n}}} -moduli space.  相似文献   

8.
Let L\square°{{\mathcal L}^{\square\circ}} be a propositional language with standard Boolean connectives plus two modalities: an S4-ish topological modality □ and a temporal modality ◦, understood as ‘next’. We extend the topological semantic for S4 to a semantics for the language L\square°{{\mathcal L}^{\square\circ}} by interpreting L\square°{{\mathcal L}^{\square\circ}} in dynamic topological systems, i.e., ordered pairs 〈X, f〉, where X is a topological space and f is a continuous function on X. Artemov, Davoren and Nerode have axiomatized a logic S4C, and have shown that S4C is sound and complete for this semantics. S4C is also complete for continuous functions on Cantor space (Mints and Zhang, Kremer), and on the real plane (Fernández Duque); but incomplete for continuous functions on the real line (Kremer and Mints, Slavnov). Here we show that S4C is complete for continuous functions on the rational numbers.  相似文献   

9.
In this second paper, we study the case of substitution tilings of \mathbb Rd{{\mathbb R}^d} . The substitution on tiles induces substitutions on the faces of the tiles of all dimensions j = 0, . . . , d − 1. We reconstruct the tiling’s equivalence relation in a purely combinatorial way using the AF-relations given by the lower dimensional substitutions. We define a Bratteli multi-diagram B{{\mathcal B}} which is made of the Bratteli diagrams Bj, j=0, ?d{{\mathcal B}^j, j=0, \ldots d} , of all those substitutions. The set of infinite paths in Bd{{\mathcal B}^d} is identified with the canonical transversal Ξ of the tiling. Any such path has a “border”, which is a set of tails in Bj{{\mathcal B}^j} for some j ≤ d, and this corresponds to a natural notion of border for its associated tiling. We define an étale equivalence relation RB{{\mathcal R}_{\mathcal B}} on B{{\mathcal B}} by saying that two infinite paths are equivalent if they have borders which are tail equivalent in Bj{{\mathcal B}^j} for some jd. We show that RB{{\mathcal R}_{\mathcal B}} is homeomorphic to the tiling’s equivalence relation RX{{\mathcal R}_\Xi} .  相似文献   

10.
We consider the class of minimal surfaces given by the graphical strips ${{\mathcal S}}We consider the class of minimal surfaces given by the graphical strips S{{\mathcal S}} in the Heisenberg group \mathbb H1{{\mathbb {H}}^1} and we prove that for points p along the center of \mathbb H1{{\mathbb {H}}^1} the quantity \fracsH(S?B(p,r))rQ-1{\frac{\sigma_H(\mathcal S\cap B(p,r))}{r^{Q-1}}} is monotone increasing. Here, Q is the homogeneous dimension of \mathbb H1{{\mathbb {H}}^1} . We also prove that these minimal surfaces have maximum volume growth at infinity.  相似文献   

11.
Let Hk\mathcal{H}_{k} denote the set {n∣2|n, n\not o 1 (mod p)n\not\equiv 1\ (\mathrm{mod}\ p) ∀ p>2 with p−1|k}. We prove that when X\frac1120(1-\frac12k) +e\leqq H\leqq XX^{\frac{11}{20}\left(1-\frac{1}{2k}\right) +\varepsilon}\leqq H\leqq X, almost all integers n ? \allowbreak Hk ?(X, X+H]n\in\allowbreak {\mathcal{H}_{k} \cap (X, X+H]} can be represented as the sum of a prime and a k-th power of prime for k≧3. Moreover, when X\frac1120(1-\frac1k) +e\leqq H\leqq XX^{\frac{11}{20}\left(1-\frac{1}{k}\right) +\varepsilon}\leqq H\leqq X, almost all integers n∈(X,X+H] can be represented as the sum of a prime and a k-th power of integer for k≧3.  相似文献   

12.
Let X be a metric measure space with an s-regular measure μ. We prove that if A ì X{A\subset X} is r{\varrho} -porous, then dimp(A) £ s-crs{{\rm {dim}_p}(A)\le s-c\varrho^s} where dimp is the packing dimension and c is a positive constant which depends on s and the structure constants of μ. This is an analogue of a well known asymptotically sharp result in Euclidean spaces. We illustrate by an example that the corresponding result is not valid if μ is a doubling measure. However, in the doubling case we find a fixed N ì X{N\subset X} with μ(N) = 0 such that dimp(A) £ dimp(X)-c(log\tfrac1r)-1rt{{\rm {dim}_p}(A)\le{\rm {dim}_p}(X)-c(\log \tfrac1\varrho)^{-1}\varrho^t} for all r{\varrho} -porous sets A ì X\ N{A \subset X{\setminus} N} . Here c and t are constants which depend on the structure constant of μ. Finally, we characterize uniformly porous sets in complete s-regular metric spaces in terms of regular sets by verifying that A is uniformly porous if and only if there is t < s and a t-regular set F such that A ì F{A\subset F} .  相似文献   

13.
A class Uk1 (J){\mathcal{U}}_{\kappa 1} (J) of generalized J-inner mvf’s (matrix valued functions) W(λ) which appear as resolvent matrices for bitangential interpolation problems in the generalized Schur class of p ×q  mvf¢s Skp ×qp \times q \, {\rm mvf's}\, {\mathcal{S}}_{\kappa}^{p \times q} and some associated reproducing kernel Pontryagin spaces are studied. These spaces are used to describe the range of the linear fractional transformation TW based on W and applied to Sk2p ×q{\mathcal{S}}_{\kappa 2}^{p \times q}. Factorization formulas for mvf’s W in a subclass U°k1 (J) of Uk1(J){\mathcal{U}^{\circ}_{\kappa 1}} (J)\, {\rm of}\, {\mathcal{U}}_{\kappa 1}(J) found and then used to parametrize the set Sk1+k2p ×q ?TW [ Sk2p ×q ]{\mathcal{S}}_{{\kappa 1}+{\kappa 2}}^{p \times q} \cap T_{W} \left[ {\mathcal{S}}_{\kappa 2}^{p \times q} \right]. Applications to bitangential interpolation problems in the class Sk1+k2p ×q{\mathcal{S}}_{{\kappa 1}+{\kappa 2}}^{p \times q} will be presented elsewhere.  相似文献   

14.
We generalize a Hilbert space result by Auscher, McIntosh and Nahmod to arbitrary Banach spaces X and to not densely defined injective sectorial operators A. A convenient tool proves to be a certain universal extrapolation space associated with A. We characterize the real interpolation space ( X,D( Aa ) ?R( Aa ) )q,p{\left( {X,\mathcal{D}{\left( {A^{\alpha } } \right)} \cap \mathcal{R}{\left( {A^{\alpha } } \right)}} \right)}_{{\theta ,p}} as
{ x  ?  X|t - q\textRea y1 ( tA )xt - q\textRea y2 ( tA )x ? L*p ( ( 0,¥ );X ) } {\left\{ {x\, \in \,X|t^{{ - \theta {\text{Re}}\alpha }} \psi _{1} {\left( {tA} \right)}x,\,t^{{ - \theta {\text{Re}}\alpha }} \psi _{2} {\left( {tA} \right)}x \in L_{*}^{p} {\left( {{\left( {0,\infty } \right)};X} \right)}} \right\}}  相似文献   

15.
The perturbation classes problem for semi-Fredholm operators asks when the equalities SS(X,Y)=PF+(X,Y){\mathcal{SS}(X,Y)=P\Phi_+(X,Y)} and SC(X,Y)=PF-(X,Y){\mathcal{SC}(X,Y)=P\Phi_-(X,Y)} are satisfied, where SS{\mathcal{SS}} and SC{\mathcal{SC}} denote the strictly singular and the strictly cosingular operators, and PΦ+ and PΦ denote the perturbation classes for upper semi-Fredholm and lower semi-Fredholm operators. We show that, when Y is a reflexive Banach space, SS(Y*,X*)=PF+(Y*,X*){\mathcal{SS}(Y^*,X^*)=P\Phi_+(Y^*,X^*)} if and only if SC(X,Y)=PF-(X,Y),{\mathcal{SC}(X,Y)=P\Phi_-(X,Y),} and SC(Y*,X*)=PF-(Y*,X*){\mathcal{SC}(Y^*,X^*)=P\Phi_-(Y^*,X^*)} if and only if SS(X,Y)=PF+(X,Y){\mathcal{SS}(X,Y)=P\Phi_+(X,Y)}. Moreover we give examples showing that both direct implications fail in general.  相似文献   

16.
We construct an explicit intertwining operator L{\mathcal L} between the Schr?dinger group eit \frac\triangle2{e^{it \frac\triangle2}} and the geodesic flow on certain Hilbert spaces of symbols on the cotangent bundle T*X Γ of a compact hyperbolic surface X Γ = Γ\D. We also define Γ-invariant eigendistributions of the geodesic flow PSj, k, nj,-nk{PS_{j, k, \nu_j,-\nu_k}} (Patterson-Sullivan distributions) out of pairs of \triangle{\triangle} -eigenfunctions, generalizing the diagonal case j = k treated in Anantharaman and Zelditch (Ann. Henri Poincaré 8(2):361–426, 2007). The operator L{\mathcal L} maps PSj, k, nj,-nk{PS_{j, k, \nu_j,-\nu_k}} to the Wigner distribution WGj,k{W^{\Gamma}_{j,k}} studied in quantum chaos. We define Hilbert spaces HPS{\mathcal H_{PS}} (whose dual is spanned by {PSj, k, nj,-nk{PS_{j, k, \nu_j,-\nu_k}}}), resp. HW{\mathcal H_W} (whose dual is spanned by {WGj,k}{\{W^{\Gamma}_{j,k}\}}), and show that L{\mathcal L} is a unitary isomorphism from HW ? HPS.{\mathcal H_{W} \to \mathcal H_{PS}.}  相似文献   

17.
Let X be a complex Banach space and let B(X){\mathcal{B}(X)} be the space of all bounded linear operators on X. For x ? X{x \in X} and T ? B(X){T \in \mathcal{B}(X)}, let rT(x) = limsupn ? ¥ || Tnx|| 1/n{r_{T}(x) =\limsup_{n \rightarrow \infty} \| T^{n}x\| ^{1/n}} denote the local spectral radius of T at x. We prove that if j: B(X) ? B(X){\varphi : \mathcal{B}(X) \rightarrow \mathcal{B}(X)} is linear and surjective such that for every x ? X{x \in X} we have r T (x) = 0 if and only if rj(T)(x) = 0{r_{\varphi(T)}(x) = 0}, there exists then a nonzero complex number c such that j(T) = cT{\varphi(T) = cT} for all T ? B(X){T \in \mathcal{B}(X) }. We also prove that if Y is a complex Banach space and j:B(X) ? B(Y){\varphi :\mathcal{B}(X) \rightarrow \mathcal{B}(Y)} is linear and invertible for which there exists B ? B(Y, X){B \in \mathcal{B}(Y, X)} such that for y ? Y{y \in Y} we have r T (By) = 0 if and only if rj( T) (y)=0{ r_{\varphi ( T) }(y)=0}, then B is invertible and there exists a nonzero complex number c such that j(T) = cB-1TB{\varphi(T) =cB^{-1}TB} for all T ? B(X){T \in \mathcal{B}(X)}.  相似文献   

18.
We present a robust representation theorem for monetary convex risk measures r: X ? \mathbbR{\rho : \mathcal{X} \rightarrow \mathbb{R}} such that
limnr(Xn) = r(X) whenever (Xn) almost surely converges to X,\lim_n\rho(X_n) = \rho(X)\,{\rm whenever}\,(X_n)\,{\rm almost\,surely\,converges\,to}\,X,  相似文献   

19.
In (Ann Sc ENS Sér 3 4:361–380, 1887) Guichard proved that, for any holomorphic function g on ${{\mathbb C}}In (Ann Sc ENS Sér 3 4:361–380, 1887) Guichard proved that, for any holomorphic function g on \mathbb C{{\mathbb C}}, there exists a holomorphic function h (on \mathbb C{{\mathbb C}}) such that h - h °t = g{h - h \circ \tau = g} where τ is the translation by 1 on \mathbb C{{\mathbb C}}. In this note we prove an analogous of this theorem in a more general situation. Precisely, let (M,F){(M,{\mathcal F})} be a complex simple foliation whose leaves are simply connected non compact Riemann surfaces and γ an automorphism of F{{\mathcal F}} which fixes each leaf and acts on it freely and properly. Then, the vector space HF(M){{\mathcal H}_{\mathcal F}(M)} of leafwise holomorphic functions is not reduced to functions constant on the leaves and for any g ? HF(M){g \in {\mathcal H}_{\mathcal F}(M)}, there exists h ? HF(M){h \in {\mathcal H}_{\mathcal F}(M)} such that h - h °g = g{h - h \circ \gamma = g}. From the proof of this theorem we derive a foliated version of Mittag–Leffler Theorem.  相似文献   

20.
Let(X,d,μ) be an RD-space with "dimension" n,namely,a space of homogeneous type in the sense of Coifman and Weiss satisfying a certain reverse doubling condition.Using the Calder'on reproducing formula,the authors hereby establish boundedness for paraproduct operators from the product of Hardy spaces H p(X) × H q(X) to the Hardy space H r(X),where p,q,r ∈(n/(n + 1),∞) satisfy 1/p + 1/q = 1/r.Certain endpoint estimates are also obtained.In view of the lack of the Fourier transform in this setting,the proofs are based on the derivation of appropriate kernel estimates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号