首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The reaction of O(3 P) with COR m clusters to produce electronically excited CO2 was studied under molecular beam conditions. It was found that the spectrum of the chemiluminescence produced extended from the blue all the way to the near infrared. The dependence of the total emission intensity on stagnation pressure was investigated for (CO) m as well as for COR m , R=He, Ne, Ar, N2, CO2 and SO2. The low pressure data indicate that small (CO) m polymers are more efficient than clusters of CO with other species in inducing the chemiluminescent reaction. The larger CO-rare gas clusters, however, exhibited larger reaction cross-sections than those of the CO polymers. Rare gas clusters ofm≧5, on the other hand have successively smaller cross sections for reaction. The reactivity of the CO2 and SO2 clusters seems to peak at aboutm=1 and then decreases for larger species. An equilibrium model for cluster formation was proposed and it was found capable of explaining and simulating the experimental observations. Contrary to what was reported from afterglow experiments, no barrier for the reaction was detected.  相似文献   

2.
3.
4.
The internal energy exchanges inside an inhomogeneous van der Waals cluster are investigated by means of molecular dynamic calculations. The very long time scales for relaxation of the high frequency degrees of freedom are examined within the framework of Nekhoroshev's theorem.  相似文献   

5.
We advance a theoretical model for vibrational predissociation (VP) of a linear triatomic molecular complex consisting of a rare-gas atom bound to diatomic, which rests on the decay of a bound state into a manifold of coupled translational continua. We explored the dependence of the VP rate on the molecular parameters of the complex, establishing an energy gap law for VP. The effects of intercontinuum coupling on the dynamics of VP were investigated.  相似文献   

6.
We show that weak bonds are responsible for the way a molecule is held in a zeolite, and for its reactivity.  相似文献   

7.
The study of van der Waals clusters is an area of growing interest and is being widely studied for a number of reasons. The measurement of the ionization efficiency (IE) curves have yielded a wealth of information by enabling ionization and appearance energies of ions to be determined which are essential for the calculation of thermochemical data. In the case of van der Waals clusters, the measurement ofIE curves enables one to determine the qualitative trends in the ionization potentials as a function of cluster size. In additionIE curves have also offered valuable insight into ionization related processes occurring in clusters. This paper will cover some of the more recent studies of Penning ionization, exciton induced decay and Coulomb explosion in van der Waals clusters through the use of electron impactIE curves.  相似文献   

8.
A new and more precise method is proposed for calculating van der Waals atomic and molecular volumes of organic compounds. The method provides for intersections of three or more spheres at one point of space. Such a possibility is essential for calculating the volumes of sterically overcrowded molecules and of molecules with intramolecular hydrogen bonds. A computer program for IBM PC/AT(XT) is developed. Depending on the atomic environment in the molecule, the average values of the volume increments for atoms C, N, O, H, F, Cl, and S are obtained using the data from the Cambridge Structural Database.N. S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow 117071. Translated from Izvestiya Akademii Nauk, Seriya Khimicheskaya, No. 4, pp. 922–931, April, 1992.  相似文献   

9.
Sub-Doppler electronic spectra with hundreds of resolved rotational lines are now available for benzene-Ar dimers and trimers. From their analysis the structure of these clusters is precisely determined. The analysis of two bands, 6 0 1 and 16 0 2 , of C6H6 · Ar is presented in detail. It leads to accurate values of the van der Waals bond length in the electronic ground and excited state. The change in frequency upon clustering is found to be a factor of 17 larger for the overtone of the out-of-plane modev 16 than for the in-plane vibrationv 1. This can be tentatively explained by an interaction of the low frequency out-of-plane motion of the ring with the van-der-Waals motion of the Ar atom.  相似文献   

10.
We show that weakly bound He-containing van der Waals molecules can be produced and magnetically trapped in buffer-gas cooling experiments, and provide a general model for the formation and dynamics of these molecules. Our analysis shows that, at typical experimental parameters, thermodynamics favors the formation of van der Waals complexes composed of a helium atom bound to most open-shell atoms and molecules, and that complex formation occurs quickly enough to ensure chemical equilibrium. For molecular pairs composed of a He atom and an S-state atom, the molecular spin is stable during formation, dissociation, and collisions, and thus these molecules can be magnetically trapped. Collisional spin relaxation is too slow to affect trap lifetimes. However, (3)He-containing complexes can change spin due to adiabatic crossings between trapped and untrapped Zeeman states, mediated by the anisotropic hyperfine interaction, causing trap loss. We provide a detailed model for Ag(3)He molecules, using ab initio calculation of Ag-He interaction potentials and spin interactions, quantum scattering theory, and direct Monte Carlo simulations to describe formation and spin relaxation in this system. The calculated rate of spin-change agrees quantitatively with experimental observations, providing indirect evidence for molecular formation in buffer-gas-cooled magnetic traps. Finally, we discuss the possibilities for spectroscopic detection of these complexes, including a calculation of expected spectra for Ag(3)He, and report on our spectroscopic search for Ag(3)He, which produced a null result.  相似文献   

11.
The relaxation kinetics of N2O and CO2 vibrationally excited molecules (VEM) in two-phase gas-cluster systems was investigated under conditions of supersonic expansion with condensation. The catalytic effect of clusters on the vibrational relaxation rate was revealed. The relaxation rate of clustered VEM, Rc, and the probability of relaxation of VEM per collision with a cluster, P, as functions of the average number of molecules in a cluster, N, were obtained. Values of Rc and P increase rapidly with increasing N, and at N = constant they decrease with decreasing cluster temperature.  相似文献   

12.
Studies of the electronic spectroscopy of tropolone in a variety of media are reviewed. Attempts to understand the effects of the surrounding medium on tropolone in its ground and first excited singlet states by studying the spectra and dynamics of its van der Waals complexes are described. The van der Waals complexes studied to date fall into two groups. Those which are primarily dispersively bound exhibit red microscopic solvent shifts, have observable tunneling doublet splittings and have structures in which the solvent species are bound above and below the plane of the chromophore in the 1∶1 and 1∶2 clusters. Those which are primarily hydrogen-bonded exhibit blue microscopic solvent shifts and exhibit no observable tunneling doublets.  相似文献   

13.
The variational Gaussian wave-packet method for computation of equilibrium density matrices of quantum many-body systems is further developed. The density matrix is expressed in terms of Gaussian resolution, in which each Gaussian is propagated independently in imaginary time beta=(k(B)T)(-1) starting at the classical limit beta=0. For an N-particle system a Gaussian exp[(r-q)(T)G(r-q)+gamma] is represented by its center qinR(3N), the width matrix GinR(3Nx3N), and the scale gammainR, all treated as dynamical variables. Evaluation of observables is done by Monte Carlo sampling of the initial Gaussian positions. As demonstrated previously at not-very-low temperatures the method is surprisingly accurate for a range of model systems including the case of double-well potential. Ideally, a single Gaussian propagation requires numerical effort comparable to the propagation of a single classical trajectory for a system with 9(N(2)+N)/2 degrees of freedom. Furthermore, an approximation based on a direct product of single-particle Gaussians, rather than a fully coupled Gaussian, reduces the number of dynamical variables to 9N. The success of the methodology depends on whether various Gaussian integrals needed for calculation of, e.g., the potential matrix elements or pair correlation functions could be evaluated efficiently. We present techniques to accomplish these goals and apply the method to compute the heat capacity and radial pair correlation function of Ne(13) Lennard-Jones cluster. Our results agree very well with the available path-integral Monte Carlo calculations.  相似文献   

14.
The method of complex-coordinate coupled-channel (CCCC) formalism previously developed in the space-fixed (SF) frame is reformulated in the body-fixed (BF) frame, more appropriate for strong-coupling van der Waals complexes. The utility of the method is demonstrated through a study of the level widths and energies of rotationally predissociating atom-diatom model systems. The possible usefulness of incorporating the centrifugal decoupling approximation in the BF CCCC theory is pointed out.  相似文献   

15.
In this paper we employ all-electron ab initio time-dependent density functional theory based method to calculate the long range dipole-dipole dispersion coefficient (van der Waals coefficient) C(6) of sodium atom clusters containing even number of atoms ranging from 2 to 20 atoms. The dispersion coefficients are obtained via Casimir-Polder relation [Phys. Rev. 3, 360 (1948)]. The calculations are carried out with two different exchange-correlation potentials: (i) the asymptotically correct statistical average of orbital potential (SAOP) and (ii) Vosko-Wilk-Nusair representation [Can. J. Phys. 58, 1200 (1980)] of exchange-correlation potential within local density approximation. A comparison with the other theoretical results has been performed. We also present the results for the static polarizabilities of sodium clusters and also compare them with other theoretical and experimental results. These comparisons reveal that the SAOP results for C(6) and static polarizability are quite accurate and very close to the experimental results. We examine the relationship between volume of the cluster and van der Waals coefficient, and find that to a very high degree of correlation C(6) scales as the square of the volume. We also present the results for van der Waals coefficient corresponding to cluster-Ar atom and cluster-N(2) molecule interactions.  相似文献   

16.
Performance of the SAFT-VR equation of state developed for the hard sphere based simple fluids, namely the square-well, Sutherland and Yukawa fluids, is examined by comparing its results with simulation data and an augmented van der Waals (vdW) equation based on a Yukawa (Y) reference. Its shown that both for the equilibrium vapor-liquid data and data along selected isotherms in the liquid and supercritical fluid phases the vdW(Y) equation provides better results, particularly when going to lower temperatures.  相似文献   

17.
In this report we present a general formulation to calculate the van der Waals interaction between two protein molecules in an electrolyte solution using boundary element method of solving linearized Poisson-Boltzmann equation. Our formulation is based upon an inhomogeneous dielectric model of proteins at the residue level. Our results for bovine pancreatic trypsin inhibitor at various relative orientations indicate that the anisotropy of the interaction can be tens of kBT.  相似文献   

18.
Ab initio calculations on twenty van der Waals dimers of small polar molecules at the experimentally observed intermolecular separation R, using Hartree-Fock molecular moments, show that the minima in the electrostatic interaction expanded up to R−6 converges to angular structures which are close to those observed experimentally for such complexes.  相似文献   

19.
Pure rotational transitions of a rare gas atom-reactive open-shell triatom van der Waals complex Ar-HO2 have been observed by Fourier transform microwave spectroscopy. The transitions observed are of a type with K(a) = 0 and 1. Furthermore, by monitoring the change of the free induction decay signal of the a-type transitions, b-type transitions have been observed by a double resonance technique in the region 18-49 GHz. All these transitions provide us precise molecular constants. The r0 structure of Ar-HO2 has been determined by fixing the structure of the HO2 monomer. The determined structure is planar and almost T shaped, where the argon atom is slightly shifted to the hydrogen atom of HO2. The experimental data supplemented by high-level ab initio calculations indicate that the van der Waals bond of Ar-HO2 is relatively rigid. On the other hand, effects on the unpaired electron distribution by the complex formation are found to be fairly small, since the fine and hyperfine constants of Ar-HO2 are well explained by those of the HO2 monomer.  相似文献   

20.
Mass-selected resonant two-photon ionization and infrared-ultraviolet double-resonance spectroscopies are combined with correlated (second Moller-Plesset perturbation) quantum chemistry calculation to probe electronic spectra and ground-state geometries of the jet-cooled dimer and higher clusters of 1-cyanonaphthalene. The results indicate that the dimer and trimer have stacked geometries, consistent with the highly efficient, rapid excimer formation that follows photoexcitation of the ground-state clusters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号