首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lee DH 《Physical review letters》2000,84(12):2694-2697
Starting from the d-wave resonating-valence-bond mean-field theory of Kotliar and Liu, we present a new, long-wavelength/low-energy exact, treatment of gauge fluctuations. The result is a theory of gapless fermion quasiparticles coupled to superconducting phase fluctuations. We will discuss the physical implications, and the similarity and differences to a theory of superconductors with phase fluctuations.  相似文献   

2.
We report momentum-resolved charge excitations in a one-dimensional (1D) Mott insulator studied using high resolution inelastic x-ray scattering over the entire Brillouin zone for the first time. Excitations at the insulating gap edge are found to be highly dispersive (momentum dependent) compared to excitations observed in two-dimensional Mott insulators. The observed dispersion in 1D cuprates ( SrCuO2 and Sr2CuO3) is consistent with charge excitations involving holons which is unique to spin-1/2 quantum chain systems. These results point to the potential utility of momentum-resolved inelastic x-ray scattering in providing valuable information about electronic structure of strongly correlated insulators.  相似文献   

3.
We report strong instantaneous photoinduced absorption in the quasi-one-dimensional Mott insulator Sr2CuO3 in the IR spectral region. The observed photoinduced absorption is to an even-parity two-photon state that occurs immediately above the absorption edge. Theoretical calculation based on a two-band extended Hubbard model explains the experimental features and indicates that the strong two-photon absorption is due to a very large dipole coupling between nearly degenerate one- and two-photon states. Room temperature picosecond recovery of the optical transparency suggests the strong potential of Sr2CuO3 for all-optical switching.  相似文献   

4.
5.

The stability under pressure of the charge-density-wave in the insulating phase of YNiO3 was studied by infrared spectroscopy and synchrotron diffraction techniques up to 23 GPa. YNiO3 undergoes a pressure induced insulator-to-metal transition at approximately 15 GPa in the pressure domain, coinciding with the melting of the charge ordered phase. The optical band gap is non-zero above 15 GPa, as is the case above the reported insulator-metal transition (585 K) in the temperature-domain. There is a similarity between the infrared spectral profile around 15 GPa and the infrared spectral profile above ca. 700 K. We conclude therefore that the pressure-induced structural/electronic transition induced around 15 GPa, probably having an as-yet unreported counterpart in the temperature domain at a temperature in excess of 585 K.  相似文献   

6.
LaTiO x compounds are structurally related to perovskites and there are two known phases. The first,x=3.50, is a 2D layered-type ferroelectric. The second,x=3.00, is a weak ferromagnet with a 3D orthorhombic distorted perovskite structure. 20 samples with varying oxygen stoichiometry between these end members were prepared by floating zone melting, and then characterized by means of X-ray powder diffraction, electron microscopy, thermogravimetric analysis, resistivity and magnetic measurement. A phase diagram is established which displays the following physical and structural properties. A structural phase boundary atx=3.20 separates a new series of 2D layered structures from the 3D orthorhombic one. The former series represents the first conducting titanium oxides with a 2D layered structure to be reported. Atx=3.10 a phase boundary exists between a metallic and a weak ferromagnetic state where the magnetic transition temperatureT c can be sensitively tuned by the oxygen stoichiometryx. Samples withT c between 100 K and 130 K exhibit a metal-semiconductor transition whereas samples with higherT c , up to 149 K, are semiconductors between room temperature and 4.2 K.  相似文献   

7.
Quantum antiferromagnets on geometrically frustrated lattices often allow a number of unusual paramagnetic ground states. The fate of these Mott insulators upon doping is an important issue that may shed some light on the high T(c) cuprate problem. We consider the doped Mott insulator on the Shastry-Sutherland lattice via the t-J model. The U(1) slave-boson mean-field theory reveals the strong competition between different broken symmetry states. It is found that, in some ranges of doping, there exist superconducting phases with or without coexisting translational-symmetry-breaking orders such as the staggered flux or dimerization. Our results will be directly relevant to SrCu2(BO3)(2) when this material is doped in future.  相似文献   

8.
9.
In the framework of an effective functional approach based on the k · p method, we study the combined effect of an interface potential and a thickness of a three-dimensional (3D) topological insulator (TI) thin film on the spin Hall conductivity in layered heterostructures comprising TI and normal insulator (NI) materials. We derive an effective two-dimensional (2D) Hamiltonian of a 3D TI thin film sandwiched between two NI slabs and define the applicability limits of approximations used. The energy gap and mass dispersion in the 2D Hamiltonian, originated from the hybridization between TI/NI interfacial bound electron states at the opposite boundaries of a TI film, are demonstrated to change sign with the TI film thickness and the interface potential strength. Finally, we argue that the spin Hall conductivity can efficiently be tuned varying the interface potential characteristics and TI film thickness.  相似文献   

10.
Lattice relaxation in oxide heterostructures: LaTiO3/SrTiO3 superlattices   总被引:1,自引:0,他引:1  
Local density approximation + Hubbard U and many-body effective Hamiltonian calculations are used to determine the effects of lattice relaxation in LaTiO3/SrTiO3 superlattices. Large ferroelectric-like distortions of the TiO6 octahedra are found, which substantially affect the Ti d-electron density, bringing the calculated results into good agreement with experimental data. The relaxations also change the many-body physics, leading to a novel symmetry-breaking-induced ordering of the xy orbitals, which does not occur in bulk LaTiO3, or in the hypothetical unrelaxed structure.  相似文献   

11.
A neutron scattering study of the Mott-Hubbard insulator LaTiO3 ( T(N) = 132 K) reveals a spin wave spectrum that is well described by a nearest-neighbor superexchange constant J = 15.5 meV and a small Dzyaloshinskii-Moriya interaction ( D = 1.1 meV). The nearly isotropic spin wave spectrum is surprising in view of the absence of a static Jahn-Teller distortion that could quench the orbital angular momentum, and it may indicate strong orbital fluctuations. A resonant x-ray scattering study has uncovered no evidence of orbital order in LaTiO3.  相似文献   

12.
A quasi-one-dimensional pi-electron charge-ordered insulator, (DI-DCNQI)2Ag, is metallized by Cu doping into the Ag sites. It is found that with doping the charge gap is diminished and then disorder-induced insulating nature comes up, eventually followed by transition or crossover to a pi-d networked metal. The profile of the charge-gap collapse is consistent with the prediction of the theory highlighting the interplay between electron correlation and disorder. The present doping method is regarded as doping of d orbital, which is different from the conventional charge and/or spin doping developed in cuprates and manganites.  相似文献   

13.
14.
We have measured photoemission spectra of SrTiO3/LaTiO3 superlattices with a topmost SrTiO3 layer of variable thickness. A finite coherent spectral weight with a clear Fermi cutoff was observed at chemically abrupt SrTiO3/LaTiO3 interfaces, indicating that an "electronic reconstruction" occurs at the interface between the Mott insulator LaTiO3 and the band insulator SrTiO3. For SrTiO3/LaTiO3 interfaces annealed at high temperatures (approximately 1000 degrees C), which leads to Sr/La atomic interdiffusion and hence to the formation of La(1-x)Sr(x)TiO3-like material, the intensity of the incoherent part was found to be dramatically reduced whereas the coherent part with a sharp Fermi cutoff was enhanced due to the spread of charge. These important experimental features are well reproduced by layer dynamical-mean-field-theory calculation.  相似文献   

15.
Following the same strategy used for RVO3, thermal conductivity measurements have been made on a series of single-crystal perovskites RTiO3 (R=La,Nd,...,Yb). Results reveal explicitly a transition from an orbital liquid to an orbitally ordered phase at a magnetic transition temperature, which is common for both the antiferromagnetic and ferromagnetic phases in the phase diagram of RTiO3. This spin/orbital transition is consistent with the mode softening at T_{N} in antiferromagnetic LaTiO3 and is supported by an anomalous critical behavior at T_{c} in ferromagnetic YTiO3.  相似文献   

16.
We study the electronic band structure, density distribution, and transport of a Bi_2Se_3 nanoribbon. We find that the density distribution of the surface states is dependent on not only the shape and size of the transverse cross section of the nanoribbon, but also the energy of the electron. We demonstrate that a transverse electric field can eliminate the coupling between surface states on the walls of the nanoribbon, remove the gap of the surface states, and restore the quantum spin Hall effects. In addition, we study the spin-dependent transport property of the surface states transmitting from top and bottom surfaces(x-y plane) to the side surfaces(z-x plane) of a Bi_2Se_3 nanoribbon. We find that transverse electric fields can open two surface channels for spin-up and-down Dirac electrons, and then switch off one channel for the spin-up Dirac electron. Our results may provide a simple way for the design of a spin filter based on topological insulator nanostructures.  相似文献   

17.
We derive and analyze the effective low-energy theory for interacting electrons in a cylindrical nanowire made of a strong topological insulator. Three different approaches provide a consistent picture for the band structure, where surface states forming inside the bulk gap correspond to one-dimensional bands indexed by total angular momentum. When a half-integer magnetic flux pierces the nanowire, we find a strongly correlated helical Luttinger liquid topologically protected against weak disorder. We describe how transport experiments can detect this state.  相似文献   

18.
为了获得制备钛酸镧(LaTiO3)薄膜的最优工艺条件,采用电子束热蒸发技术在K9基底上制备了单层LaTiO3激光薄膜。研究了不同工艺条件对LaTiO3薄膜激光损伤特性的影响。研究结果表明,对LaTiO3薄膜激光损伤阈值(laser-induced damage threshold, LIDT)影响最大的工艺条件是沉积温度,其次是工作真空度,最后是蒸发束流。获得了制备单层LaTiO3激光薄膜的最优工艺条件:沉积温度175 ℃、工作真空度2.010-2 Pa、蒸发束流120 mA(8 keV);证明了最优工艺下制备的LaTiO3薄膜具有良好的激光损伤特性、稳定性以及重复性,所制备LaTiO3薄膜的激光损伤阈值为16.9 J/cm2(1 064 nm,10 ns)。  相似文献   

19.
Using an extended slave-boson method,we draw a global phase diagram summarizing both magnetic phases and paramagnetic(PM) topological insulators(TIs) in a three-dimensional topological Kondo insulator(TKI). By including electron hopping(EH) up to the third neighbors, we identify four strong TI(STI) phases and two weak TI(WTI) phases. Then, the PM phase diagrams characterizing topological transitions between these TIs are depicted as functions of EH,f-electron energy level,and hybridization constant. We also find an insulator-metal transition from an STI phase that has surface Fermi rings and spin textures in qualitative agreement with the TKI candidate SmBs. In the weak hybridization regime, antiferromagnetic(AF) order naturally arises in the phase diagrams. Depending on how the magnetic boundary crosses the PM topological transition lines,AF phases are classified into the AF topological insulator(AFTI) and the non-topological AF insulator, according to their Z_2 indices. In two small regions of parameter space, two distinct topological transition processes between AF phases occur, leading to two types of AFTIs showing distinguishable surface dispersions around their Dirac points.  相似文献   

20.
Raman scattering is used to observe pronounced electronic excitations around 230 meV--well above the two-phonon range--in the Mott insulators LaTiO3 and YTiO3. Based on the temperature, polarization, and photon energy dependence, the modes are identified as orbital excitations. The observed profiles bear a striking resemblance to magnetic Raman modes in the insulating parent compounds of the superconducting cuprates, indicating an unanticipated universality of the electronic excitations in transition metal oxides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号