首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Alkali metal ammonia clusters, in their cationic, neutral, and anionic form, are molecular models for the alkali-ammonia solutions, which have rich variation of phases with the solvated electrons playing an important role. With two s electrons, the Na(-)(NH(3))(n) and Li(-)(NH(3))(n) clusters are unique in that they capture the important aspect of the coupling between two solvated electrons. By first principles calculations, we demonstrate that the two electrons are detached from the metal by n = 10, which produces a cluster with a solvated electron pair in the vicinity of a solvated alkali cation. The coupling of the two electrons leads to either the singlet or triplet state, both of which are stable. They are also quite distinct from the hydrated anionic clusters Na(-)(H(2)O)(n) and Li(-)(H(2)O)(n), in that the solvated electrons are delocalized and widely distributed among the solvent ammonia molecules. The Na(-)(NH(3))(n) and Li(-)(NH(3))(n) series, therefore, provide another interesting type of molecular model for the investigation of solvated electron pairs.  相似文献   

2.
First-principles molecular dynamics simulations of the excited-state dynamics of I-(H2O)3 have been performed to gain some insight into the general features of the relaxation process of photoexcited I-(H2O)n clusters. The relaxation of excited I-(H2O)3 is characterized by rapid motion of water molecules and slow recoil motion of the iodine atom. Both solvent reorganization and iodine atom motion appear to be important for interpreting the existing femtosecond photoelectron spectroscopy experimental results.  相似文献   

3.
Infrared spectra of Li(NH3)(n) clusters as a function of size are reported for the first time. Spectra have been recorded in the N-H stretching region for n=4-->7 using a mass-selective photodissociation technique. For the n=4 cluster, three distinct IR absorption bands are seen over a relatively narrow region, whereas the larger clusters yield additional features at higher frequencies. Ab initio calculations have been carried out in support of these experiments for the specific cases of n=4 and 5 for various isomers of these clusters. The bands observed in the spectrum for Li(NH3)(4) can all be attributed to N-H stretching vibrations from solvent molecules in the first solvation shell. The appearance of higher frequency N-H stretching bands for n > or =5 is assigned to the presence of ammonia molecules located in a second solvent shell. These data provide strong support for previous suggestions, based on gas phase photoionization measurements, that the first solvation shell for Li(NH3)(n) is complete at n=4. They are also consistent with neutron diffraction studies of concentrated lithium/liquid ammonia solutions, where Li(NH3)(4) is found to be the basic structural motif.  相似文献   

4.
The dynamics of charge-transfer-to-solvent states are studied in I- (H2O)(n=3-10) clusters and their deuterated counterparts using time-resolved photoelectron imaging. The photoelectron spectra for clusters with n > or = 5 reveal multiple time scales for dynamics after their electronic excitation. An increase in the vertical detachment energy (VDE) by several hundred millielectronvolts on a time scale of approximately 1 ps is attributed to stabilization of the excess electron, primarily through rearrangement of the solvent molecules, but a contribution to this stabilization from motion of the I atom cannot be ruled out. The VDE drops by approximately 50 meV on a time scale of tens of picoseconds; this is attributed to loss of the neutral iodine atom. Finally, the pump-probe signal decays with a time constant of 60 ps-3 ns, increasing with cluster size. This decay is commensurate with the growth of very slow electrons and is attributed to autodetachment. Smaller clusters (n = 3, 4) display simpler dynamics. Anisotropy parameters are reported for clusters n = 4-9.  相似文献   

5.
Relaxation dynamics of photoexcited charge-transfer-to-solvent (CTTS) states for the I(-)(CH(3)CN)(n) (n = 2 and 3) clusters has been theoretically studied using electronic structure methods. First, we have calculated several lowest singlet and triplet potential energy surfaces using the multireference configuration interaction method. It was found that the character of the singlet CTTS excited-state potential surfaces is very similar to that of the triplet CTTS states. Due to a small singlet-triplet splitting, the lowest triplet potential energy surface was used as a good model to understand the dynamics of the photoexcited singlet CTTS states. We have carried out direct molecular dynamics simulations on the lowest triplet surface at the B3LYP level. When an I(-) anion is exteriorly solvated by CH(3)CN molecules, we found that the (CH(3)CN)(n)(-) anion cluster is effectively produced. In addition, when the I(-) anion is placed in the interior in I(-)(CH(3)CN)(n) clusters, photoexcitation gives an acetonitrile monomer anion plus neutral monomers. However, if the initial geometric configuration is distorted from the minimum structure, we also found that the (CH(3)CN)(2)(-) anion cluster, where an excess electron is internally trapped, is formed via I(-)(CH(3)CN)(2) + hnu --> I + (CH(3)CN)(2)(-) process.  相似文献   

6.
The constant ionization potential for hydrated sodium clusters Na(H2O)n just beyond n=4, as observed in photoionization experiments, has long been a puzzle in violation of the well-known (n+1)(-1/3) rule that governs the gradual transition in properties from clusters to the bulk. Based on first principles calculations, a link is identified between this puzzle and an important process in solution: the reorganization of the solvation structure after the removal of a charged particle. Na(H2O)n is a prototypical system with a solvated electron coexisting with a solvated sodium ion, and the cluster structure is determined by a balance among three factors: solute-solvent (Na+-H2O), solvent-solvent (H2O-H2O), and electron-solvent (OH{e}HO) interactions. Upon the removal of an electron by photoionization, extensive structural reorganization is induced to reorient OH{e}HO features in the neutral Na(H2O)n for better Na+-H2O and H2O-H2O interactions in the cationic Na+(H2O)n. The large amount of energy released, often reaching 1 eV or more, indicates that experimentally measured ion signals actually come from autoionization via vertical excitation to high Rydberg states below the vertical ionization potential, which induces extensive structural reorganization and the loss of a few solvent molecules. It provides a coherent explanation for all the peculiar features in the ionization experiments, not only for Na(H2O)n but also for Li(H2O)n and Cs(H2O)n. In addition, the contrast between Na(H2O)n and Na(NH3)n experiments is accounted for by the much smaller relaxation energy for Na(NH3)n, for which the structures and energetics are also elucidated.  相似文献   

7.
Coordination and solvation structures of the Cu(+)(NH(3))(n) ions with n = 3-8 are studied by infrared photodissociation spectroscopy in the NH-stretch region with the aid of density functional theory calculations. Hydrogen bonding between NH(3) molecules is absent for n = 3, indicating that all NH(3) molecules are bonded directly to Cu(+) in a tri-coordinated form. The first sign of hydrogen bonding is detected at n = 4 through frequency reduction and intensity enhancement of the infrared transitions, implying that at least one NH(3) molecule is placed in the second solvation shell. The spectra of n = 4 and 5 suggest the coexistence of multiple isomers, which have different coordination numbers (2, 3, and 4) or different types of hydrogen-bonding configurations. With increasing n, however, the di-coordinated isomer is of growing importance until becoming predominant at n = 8. These results signify a strong tendency of Cu(+) to adopt the twofold linear coordination, as in the case of Cu(+)(H(2)O)(n).  相似文献   

8.
We present a quantum Monte Carlo study of the solvation and spectroscopic properties of the Mg-doped helium clusters MgHe(n) with n=2-50. Three high-level [MP4, CCSD(T), and CCSDT] MgHe interaction potentials have been used to study the sensitivity of the dopant location on the shape of the pair interaction. Despite the similar MgHe well depth, the pair distribution functions obtained in the diffusion Monte Carlo simulations markedly differ for the three pair potentials, therefore indicating different solubility properties for Mg in He(n). Moreover, we found interesting size effects for the behavior of the Mg impurity. As a sensitive probe of the solvation properties, the Mg excitation spectra have been simulated for various cluster sizes and compared with the available experimental results. The interaction between the excited 1P Mg atom and the He moiety has been approximated using the diatomics-in-molecules method and the two excited 1pi and 1sigma MgHe potentials. The shape of the simulated MgHe50 spectra shows a substantial dependency on the location of the Mg impurity, and hence on the MgHe pair interaction employed. To unravel the dependency of the solvation behavior on the shape of the computed potentials, exact density-functional theory has been adapted to the case of doped He(n) and various energy distributions have been computed. The results indicate the shape of the repulsive part of the MgHe potential as an important cause of the different behaviors.  相似文献   

9.
Photoionization threshold measurements have been carried out for small Li(NH3)n clusters (n = 1-5) and have been combined with ab initio calculations to determine structural information. The calculated adiabatic ionization energy for the lowest-energy isomer of each cluster is found to be in excellent agreement with the corresponding experimental photoionization threshold, providing evidence that the calculated structures are correct. The combination of the photoionization efficiency curve and the calculated adiabatic ionization energies also confirms the tentative assignment of the infrared spectrum of Li(NH3)4 reported by Salter and co-workers (J. Chem. Phys. 2006, 125, 34302); i.e., the 3 + 1 isomer does not contribute and the spectrum is due solely to the 4 + 0 isomer. The findings are consistent with an inner solvation shell that can hold a maximum of four ammonia molecules around the central lithium atom.  相似文献   

10.
Proton translocation along ammonia wires is investigated in 7-hydroxyquinoline.(NH(3))(n) clusters, both experimentally by laser spectroscopy and theoretically by Hartree-Fock and density functional (DFT) calculations. These clusters serve as realistic finite-size models for proton transfer along a chain of hydrogen-bonded solvent molecules. In the enol tautomer of 7-hydroxyquinoline (7-HQ), the OH group acts as a proton injection site into the (NH(3))(n)cluster. Proton translocation along a chain of three NH(3) molecules within the cluster can take place, followed by reprotonation of 7-HQ at the quinolinic N atom, forming the 7-ketoquinoline tautomer. Exoergic proton transfer from the OH group of 7-HQ to the closest NH(3) molecule within the cluster giving a zwitterion 7-HQ-.(NH(3))(6)H+ (denoted PT-A) occurs at a threshold cluster size of n = 6 in the DFT calculations and at n = 5 or 6 experimentally. Three further locally stable zwitterion clusters denoted PT-B, PT-B', and PT-C, the keto tautomer, and several transition structures along the proton translocation path were characterized theoretically. Grotthus-type proton-hopping mechanisms occur for three of the proton transfer steps, which have low barriers and are exoergic or weakly endoergic. The step with the highest barrier involves a complex proton transfer mechanism, involving structural reorganization and large-scale diffusive motions of the cluster.  相似文献   

11.
The first mass-selective vibrational spectra have been recorded for Na(NH3)n clusters. Infrared spectra have been obtained for n = 3-8 in the N-H stretching region. The spectroscopic work has been supported by ab initio calculations carried out at both the DFT(B3LYP) and MP2 levels, using a 6-311++G(d,p) basis set. The calculations reveal that the lowest energy isomer for n or= 7 is indicative of molecules entering a second solvation shell, i.e., the inner solvation shell around the sodium atom can accommodate a maximum of six NH3 molecules.  相似文献   

12.
We report 355 and 532 nm photoelectron imaging results for H(-)(NH(3))(n) and NH(2)(-)(NH(3))(n), n = 0-5. The photoelectron spectra are consistent with the electrostatic picture of a charged solute (H(-) or NH(2)(-)) solvated by n ammonia molecules. For a given number of solvent molecules, the NH(2)(-) core anion is stabilized more strongly than H(-), yet the photoelectron angular distributions for solvated H(-) deviate more strongly from the unsolvated limit than those for solvated NH(2)(-). Hence, we conclude that solvation effects on photoelectron angular distributions are dependent on the electronic structure of the anion, i.e., the type of the initial orbital of the photodetached electron, rather than merely the strength of solvation interactions. We also find evidence of photofragmentation and autodetachment of NH(2)(-)(NH(3))(2-5), as well as autodetachment of H(-)(NH(3))(5), upon 532 nm excitation of these species.  相似文献   

13.
We report a theoretical study of the nonadiabatic fragmentation dynamics of ionized neon clusters embedded in helium nanodroplets for cluster sizes up to n=14 atoms. The dynamics of the neon atoms is modeled using the molecular dynamics with quantum transitions method of Tully [J. Chem. Phys. 93, 1061 (1990)] with the nuclei treated classically and transitions between electronic states quantum mechanically. The potential-energy surfaces are derived from a diatomics-in-molecules model to which induced dipole-induced dipole interactions are added. The effect of the spin-orbit interaction is also discussed. The helium environment is modeled by a friction force acting on charged atoms whose speed exceeds the critical Landau velocity. The dependence of the fragment size distribution on the friction strength and on the initial nanodroplet size is investigated. By comparing with the available experimental data obtained for Ne3+ and Ne4+, a reasonable value for the friction coefficient, the only parameter of the model, is deduced. This value is then used to predict the effect of the helium environment on the dissociation dynamics of larger neon clusters, n=5-14. The results show stabilization of larger fragments than in the gas phase, but fragmentation is not completely caged. In addition, two types of dynamics are characterized for Ne4+: fast and explosive, therefore leaving no time for friction to cool down the process when dynamics starts on one of the highest electronic states, and slower, therefore leading to some stabilization by helium when it starts on one of the lowest electronic states.  相似文献   

14.
The cross sections for electron scattering on OH-(H2O)n for n = 0-4 were measured from threshold to approximately 50 eV. All detachment cross sections were found to follow the classical prediction given earlier [Phys. Rev. Lett. 74, 892 (1995)] with a threshold energy for electron-impact detachment that increased upon sequential hydration, yielding values in the range from 4.5 eV +/- 0.2 eV for OH- to 12.10 eV +/- 0.5 eV for OH-(H2O)4. For n > or = 1, we found that approximately 80% of the total reaction events lead to electron detachment plus total dissociation of the clusters into the constituent molecules of OH and H2O. Finally, we observed resonances in the cross sections for OH-(H2O)3 and for OH-(H2O)4. The resonances were located at approximately 15 eV and were ascribed to the formation of dianions in excited states.  相似文献   

15.
This paper reports the first characterization of the (NH(3))(n)NH+ cluster series produced by a 252Cf fission fragments (FF) impact onto a NH(3) ice target. The (NH(3))(n=1-6)NH+ members of this series have been analyzed theoretically and experimentally. Their ion desorption yields show an exponential dependence of the cluster population on its mass, presenting a relative higher abundance at n = 5. The results of DFT/B3LYP calculations show that two main series of ammonium clusters may be formed. Both series follow a clear pattern: each additional NH(3) group makes a new hydrogen bond with one of the hydrogen atoms of the respective {NH(3)NH}+ and {NH(2)NH(2)}+ cores. The energy analysis (i.e., D-plot and stability analysis) shows that the calculated members of the (NH(3))(n-1){NH(2)NH(2)}+ series are more stable than those of the (NH(3))(n-1){NH(3)NH}+ series. The trend on the relative stability of the members of more stable series, (NH(3))(n-1){NH(2)NH(2)}+, shows excellent agreement with the experimental distribution of cluster abundances. In particular, the (NH(3))4{NH(2)NH(2)}+ structure is the most stable one, in agreement with the experiments.  相似文献   

16.
The scattering behavior of neutral ammonia clusters off a LiF(100) surface is studied. Ammonia clusters are produced by a coexpansion of NH3 and Kr with an average kinetic energy of 48 meV per monomer molecule. Using single photon VUV laser ionization at λ = 118 nm (hv = 10.49 eV) the mass distribution of scattered particles is obtained in a reflecting time-of-flight mass spectrometer. Compared with the incoming cluster beam the average cluster size of the scattered particles is drastically decreased. The angular distribution of NH 3 + and NH 4 + after scattering reveals a strong inelastic interaction between the clusters and the LiF(100) surface which is described in the context of a thermokinetic model and a phonon excitation along the (001) azimuth of the LiF(100) surface.  相似文献   

17.
Electron solvation in water clusters following charge transfer from iodide   总被引:1,自引:0,他引:1  
The dynamics following charge transfer to solvent from iodide to a water cluster are studied using time-resolved photoelectron imaging of I-(H2O)n and I-(D2O)n clusters with n< or =28. The results show spontaneous conversion, on a time scale of approximately 1 ps, from water cluster anions with surface-bound electrons to structures in which the excess electron is more strongly bound and possibly more internalized within the solvent network. The resulting dynamics provide valuable insight into the electron solvation dynamics in water clusters and the relative stabilities between recently observed isomers of water cluster anions.  相似文献   

18.
19.
The structure and harmonic vibrations of Ga(n)N(n) (n = 3-10) clusters have been investigated using the B3LYP (Becke 3-parameter-Lee-Yang-Parr) density functional theory. All structures are found to be cumulenic D(nh) rings (equal bonds, alternating angles), with one intense out of plane mode and three infrared-active degenerate modes, of which the highest one is extremely intense and asymptotically increases to 1029 cm(-1) for n = 10. Comparisons with C2n, B(n)N(n), and Al(n)N(n) clusters, the structure and bonding type for the Ga(n)N(n) (n=3-10) clusters are consistent with those of the C2n (n = 3, 5, 7, ...) clusters, the B(n)N(n) (n = 3-10), and Al(n)N(n) (n = 3-9) clusters.  相似文献   

20.
Simulated annealing Monte Carlo conformer searches using the "mag-walking" algorithm are employed to locate the global minima of molecular clusters of ammonium chloride of the types (NH(4)Cl)(n), (NH(4)(+))(NH(4)Cl)(n), and (Cl(-))(NH(4)Cl)(n) with n = 1-13. The M06-2X density functional theory method is used to refine and predict the structures, energies, and thermodynamic properties of the neutral, cation, and anion clusters. For selected small clusters, the resulting structures are compared to those obtained from a variety of models and basis sets, including RI-MP2 and B3LYP calculations. M06-2X calculations predict enhanced stability of the (NH(4)(+))(NH(4)Cl)(n) clusters when n = 3, 6, 8, and 13. This prediction corresponds favorably to anomalies previously observed in thermospray mass spectroscopy experiments. The (NH(4)Cl)(n) clusters show alternations in stability between even and odd values of n. Clusters of the type (Cl(-))(NH(4)Cl)(n) display a magic number distribution different from that of the cation clusters, with enhanced stability predicted for n = 2, 6, and 11. None of the observed cluster structures resemble the room-temperature CsCl structure of NH(4)Cl(s), which is consistent with previous work. Numerous clusters have structures reminiscent of the higher-temperature, rock-salt phase of the solid ammonium halides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号