首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In order to explain the reactivity of aryldihalophosphites towards halophosphomum salts, photoelectron spectra of PhOPX2 (X=F, Cl) were studied. Electron densities of boundary molecular orbitals (MO) for these compounds were calculated using the MNDO method and analyzed. Replacement of F by Cl was shown to substantially affect the orbital. When X= Cl, this MO embraces the whole of the OPX2 moiety whereas for X=F it is localized on the P-O bond.Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 2, pp. 323–324, February, 1993.  相似文献   

2.
We outline a theory of UV and higher-energy photoemission spectroscopy of chemisorbed atoms, that aims at the accurate calculation of inner electron binding energies and photoabsorption cross sections by including solid state and localized relativistic and correlation effects. It is based on an “atom on (in) solids” approach where one first extracts a surface potential and then uses it in a coupled Hartree–Fock theory to obtain self-consistently the shifts and splittings of atomic levels. A first application of this theoretical program has been carried out on Na on the Al(100) system, by calculating from first principles the binding energies of the Na 1s and 2s electrons. For a coverage of 1.23 × 1014 adatoms/cm2 we find BE (1s) = 1075.2 eV and BE (2s) = 66.2 eV. Also, the Na 2p orbitals are found to split in the cylindrical symmetry by about 0.2 eV.  相似文献   

3.
A comparison of x-ray photoemission from Ag clusters deposited on polygraphite and highly oriented pyrolitic graphite shows the influence of the support both on the valence band and on the core 3d level of the metal. Positive shifts have been obtained with respect to the bulk for the Fermi edge and the 3d peaks depending on the number of silver atoms deposited on the substrates. When the deposition is very small (cluster regime) the positive shifts of the binding energies are quite different for different substrates and cannot have a common origin. In contrast with recent work, we show that several effects contribute to these shifts: initial state effects like charge redistribution as well as final state effects like the hole-electron interaction.  相似文献   

4.
《Tetrahedron》1986,42(22):6263-6267
The photoelectron spectroscopy of a number of radical anions has been investigated. We find the following electron affinities: EA(C3) =1.981 ±0.020 eV, EA(C3H) = 1.858 ±0.023 eV, EA(C3H2) = 1.794 ± 0.025 eV, EA(C3O) = 1.34±0.15 eV, EA(C3O2) = 0.85±0.15 eV, EA(C4O)= 2.05±0.15 eV, and EA(CS2) = 0.895± 0.020 eV. The structure and bonding for each of these ions is discussed.  相似文献   

5.
Negative-ion photoelectron spectroscopy is applied to the PH-, PH2-, P2H-, P2H2-, and P2H3-molecular anions. Franck-Condon simulations of the photoelectron spectra are used to analyze the spectra and to identify various P2H(n)- species. The simulations employ density-functional theory calculations of molecular geometries and vibrational frequencies and normal modes, and coupled-cluster theory calculations of electron affinities. The following electron affinities are obtained: EA0(PH) = 1.027 +/- 0.006 eV, EA0(PH2) = 1.263 +/- 0.006 eV, and EA0(P2H) = 1.514 +/- 0.010 eV. A band is identified as a mixture of trans-HPPH- and cis-HPPH-. Although the trans and cis bands cannot be definitively assigned from experimental information, using theory as a guide we obtain EA0(trans-HPPH)= 1.00 +/- 0.01 eV and EA0(cis-HPPH) = 1.03 +/- 0.01 eV. A weak feature tentatively assigned to P2H3- has a vertical detachment energy of 1.74 eV. The derived gas-phase acidity of phosphine is delta(acid)G298(PH3) < or = 1509.7 +/- 2.1 kJ mo1(-1).  相似文献   

6.
We present low-energy velocity map photoelectron imaging results for bare and Ar solvated nitroethane anions. We report an improved value for the adiabatic electron affinity of nitroethane of (191 ± 6) meV which is used to obtain a C-NO(2) bond dissociation energy of (0.589 ± 0.019) eV in nitroethane anion. We assign a weak feature at (27 ± 5) meV electron binding energy to the dipole-bound anion state of nitroethane. Photoelectron angular distributions exhibit increasing anisotropy with increasing kinetic energies. The main contributions to the photoelectron spectrum of nitroethane anion can be assigned to the vibrational modes of the nitro group. Transitions involving torsional motion around the CN bond axis lead to strong spectral congestion. Interpretation of the photoelectron spectrum is assisted by ab initio calculations and Franck-Condon simulations.  相似文献   

7.
8.
The threshold energy Et = 10.06 eV (0.002 eV standard deviation) is determined for photoelectron emission by liquid water and is correlated with Et = 8.45 eV for OH? (aq). Free energy changes and standard reduction potentials are calculated for both emission processes. Reorganization free energies are correlated to solvation free energies for H2O+(aq) and OH?(aq).  相似文献   

9.
We present a synergetic experimental/theoretical study of hydrated hexafluorobenzene anions. Experimentally, we measured the anion photoelectron spectra of the anions, C6F6(-)(H2O)n (n=0-2). The spectra show broad peaks, which shift to successively higher electron binding energies with the addition of each water molecule to the hexafluorobenzene anion. Complementing these results, we also conducted density functional calculations which link adiabatic electron affinities to the optimized geometric structures of the negatively charged species and their neutral counterparts. Neutral hexafluorobenzene-water complexes are not thought to be hydrogen bonded. In the case of C6F6(-)(H2O)1, however, its water molecule was found to lie in the plane of the hexafluorobenzene anion, bound by two O-H...F ionic hydrogen bonds. Whereas in the case of C6F6(-)(H2O)2, both water molecules also lie in the plane of and are hydrogen bonded to the hexafluorobenzene anion but on opposite ends. This study and that of Schneider et al. [J. Chem. Phys. 127, 114311 (2007), preceding paper] are in agreement regarding the geometry of C6F6(-)(H2O)1.  相似文献   

10.
Microwave-enhanced reactions are very fast in comparison to thermal reactions. The determination of optimal end point often fails because conventional analytical methods are too slow. Therefore, we established a fast method using FTIR spectroscopy. The result of the reaction control analysis is obtained within less than 1 min.  相似文献   

11.
(Nickel)(n)(benzene)(m) (-) cluster anions were studied by both mass spectrometry and anion photoelectron spectroscopy. Only Ni(n)(Bz)(m) (-) species for which n > or =m were observed in the mass spectra. No single-nickel Ni(1)(Bz)(m) (-) species were seen. Adiabatic electron affinities, vertical detachment energies, and second transition energies were determined for (n,m)=(2,1), (2,2), (3,1), and (3,2). For the most part, calculations on Ni(n)(Bz)(m) (-) species by B. K. Rao and P. Jena [J. Chem. Phys. 117, 5234 (2002)] were found to be consistent with our results. The synergy between their calculations and our experiment provided enhanced confidence in the theoretically implied magnetic moments of several nickel-benzene complexes. The magnetic moments of small nickel clusters were seen to be extremely sensitive to immediate molecular environmental effects.  相似文献   

12.
We report the 364-nm photoelectron spectrum of HC(4)N(-). We observe electron photodetachment from the bent X(2)A" state of HC(4)N(-) to both the near-linear X(3)A" and the bent ? (1)A' states of neutral HC(4)N. We observe an extended, unresolved vibrational progression corresponding to X(3)A" ← X(2)A" photodetachment, and we measure the electron affinity (EA) of the X(3)A" state of HC(4)N to be 2.05(8) eV. Photodetachment to the bent ? (1)A' state results in a single intense origin peak at a binding energy of 2.809(4) eV, from which we determine the singlet-triplet splitting (ΔE(ST)) of HC(4)N: 0.76(8) eV. For comparison and to aid in the interpretation of the HC(4)N(-) spectrum, we also report the 364-nm photoelectron spectra of HCCN(-) and DCCN(-). Improved signal-to-noise over the previous HCCN(-) and DCCN(-) photoelectron spectra allows for a more precise determination of the EAs and ΔE(ST)s of HCCN and DCCN. The EAs of HCCN and DCCN are measured to be 2.001(15) eV and 1.998(15) eV, respectively; ΔE(ST)(HCCN) is 0.510(15) eV and ΔE(ST)(DCCN) is 0.508(15) eV. These results are discussed in the context of other organic carbene chains.  相似文献   

13.
We report the observation of hydrated adenine anions, A(-)(H(2)O)(n), n=1-7, and their study by anion photoelectron spectroscopy. Values for photoelectron threshold energies, E(T), and vertical detachment energies are tabulated for A(-)(H(2)O)(n) along with those for hydrated uracil anions, U(-)(H(2)O)(n), which are presented for comparison. Analysis of these and previously measured photoelectron spectra of hydrated nucleobase anions leads to the conclusion that threshold energies significantly overstate electron affinity values in these cases, and that extrapolation of hydrated nucleobase anion threshold values to n=0 leads to incorrect electron affinity values for the nucleobases themselves. Sequential shifts between spectra, however, lead to the conclusion that A(-)(H(2)O)(3) is likely to be the smallest adiabatically stable, hydrated adenine anion.  相似文献   

14.
Palladium particle arrays formed by vacuum deposition onto a carbon film have been investigated with UV photoelectron spectroscopy. The width of the Pd valence band was found to be a sensitive function of particle size.  相似文献   

15.
We report the conformationally- and vibrationally-selected photoelectron spectroscopy of propanal obtained by resonance-enhanced multiphoton ionization (REMPI) using photoelectron imaging. These photoelectron spectra, employing (2 + 1) ionization via the (n, 3s) Rydberg transitions in the range from 365 to 371 nm, confirm that there are two stable conformer origins in the lowest ionic state, the cis conformer with a co-planar CCCO geometry and a gauche conformer with a approximately 119 degrees CCCO dihedral angle. From ab initio calculations at the B3LYP/6-311++G** level, we find the gauche conformer is slightly more stable, with the energy difference between two conformers determined to be only 65 cm(-1). In our photoelectron spectra, the vertical ionization potential (IP) for the cis conformer of propanal was then determined to be 9.999 (+/-0.003) eV, while that of the gauche conformer of propanal was estimated to be 9.944 eV. A long vibrational progression in the in-plane CCCO deformation vibrational mode, v, for the cis conformer is systematically observed in all photoelectron spectra in which this mode is excited, suggesting that the geometry of the ground ionic state is significantly different from that of the 3s Rydberg state, particularly along the v(15) coordinates.  相似文献   

16.
We examine the utility of photoelectron spectroscopy (PES) as a structural probe of Si(n) (-) in the n=20-26 size range by determining isomers and associated photoelectron spectra from first principles calculations. Across the entire size range, we consistently obtain a good agreement between the theory and experiment [Hoffmann et al., Eur. Phys. J. D 16, 9 (2001)]. We find that PES can almost invariably distinguish between structurally distinct isomers at a given cluster size, but that structurally similar isomers usually cannot be reliably distinguished by PES. For many, but not all, sizes the isomer giving the best match to experiment is the lowest-energy one found theoretically. Thus, combining theory with PES experiments emerges as a useful source of structural information even for intermediate size clusters.  相似文献   

17.
Experimental innovations have allowed for the application of rather conventional spectroscopic molecular beam techniques to the study of electronic properties of molecular beam isolated neutral aggregates. Recent results for mercury clusters obtained by photoelectron spectroscopy and photoabsorption spectroscopy will be discussed. The experimentally available data for mercury clusters indicate a size dependent gradual evolution of metallic bulk properties in the approximate size region between 13 and 70 atoms.  相似文献   

18.
Zero Kinetic Energy (ZEKE) spectroscopy, originally developed as a high resolution form of photoelectron spectroscopy, promised a means to the unambiguous determination of ionic (ro)vibrational states. Since its original development, it has spawned numerous methodological offshoots and has become one of the default methods of choice for high resolution spectroscopy of the ion. This tutorial review describes the historical development of the method, provides some insight into how it works and assesses the impact of the technique by reviewing some of the highlights of the past 20 years as well as some of the more recent developments and applications.  相似文献   

19.
HeI photoelectron spectra of three terpenes: alpha-pinene, pulegone and cembrene have been measured. The analysis of their electronic structure is based on the comparison of measured spectra with those of related compounds and on the comparison with molecular structures of studied compounds. We discuss changes in ionization energies of C-C double bonds which are situated at different positions along the rings.  相似文献   

20.
Metal (M)-sulfur cluster anions (M = Ag, Fe and Mn) have been studied using photoelectron spectroscopy (PES) with a magnetic-bottle type time-of-flight electron spectrometer. The MnS m ? cluster anions were formed in a laser vaporization cluster source. For Ag-S, the largest coordination number of Ag atoms (n max) is generally expressed as n max =2m ? 1 in each series of the number of S atoms (m). For Fe?S and Mn?S, it was found that the stable cluster ions are the ones with compositions of n=m and n=m±1. Their electron affinities were measured from the onset of the PES spectrum. For Ag?S, the EAs of Ag1Sm are small and around 1 eV, whereas those of AgnSm (n ≥ 2) become large above 2 eV. The features in the mass distribution and PES suggest that Ag2S unit is preferentially formed with increasing the number of Ag atoms. For Fe?S and Mn?S, the PES spectra of FenS m ? /MnnS m ? show a unique similarity at n ≥ m, indicating that the Fe/Mn atom addition to FenS n ? /MnnS n ? has little effect on the electronic property of FenSn/MnnSn. The PES spectra imply that the FenSn cluster is the structural framework of these clusters, as similarly as the determined structure of the FenSn cluster in nitrogenase enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号