首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nonlinear harmonic radiation was observed using the VISA self-amplified, spontaneous emission (SASE) free-electron laser (FEL) at saturation. The gain lengths, spectra, and energies of the three lowest SASE FEL modes were experimentally characterized. The measured nonlinear harmonic gain lengths and center spectral wavelengths decrease with harmonic number, n, which is consistent with nonlinear harmonic theory. Both the second and third nonlinear harmonics energies are about 1% of the fundamental energy. These experimental results demonstrate for the first time the feasibility of using nonlinear harmonic SASE FEL radiation to produce coherent, femtosecond x rays.  相似文献   

2.
Observation of ultrawide bandwidth, up to 15% full-width, high-gain operation of a self-amplified spontaneous emission free-election laser (SASE FEL) is reported. This type of lasing is obtained with a strongly chirped beam (deltaE/E approximately 1.7%) emitted from the accelerator. Because of nonlinear pulse compression during transport, a short, high current bunch with strong mismatch errors is injected into the undulator, giving high FEL gain. Start-to-end simulations reproduce key features of the measurements and provide insight into mechanisms, such as angular spread in emitted photon and electron trajectory distributions, which yield novel features in the radiation spectrum.  相似文献   

3.
Experimental evidence for self-amplified spontaneous emission (SASE) at 530 nm is reported. The measurements were made at the low-energy undulator test line facility at the Advanced Photon Source, Argonne National Laboratory. The experimental setup and details of the experimental results are presented, as well as preliminary analysis. This experiment extends to shorter wavelengths the operational knowledge of a linac-based SASE free-electron laser and explicitly shows the predicted exponential growth in intensity of the optical pulse as a function of length along the undulator.  相似文献   

4.
5.
We report on the first time-resolved phase measurement on self-amplified spontaneous emission (SASE) free-electron laser (FEL) pulses. We observed that the spikes in the output of such free-electron laser pulses have an intrinsic positive chirp. We also observed that the energy chirp in the electron bunch mapped directly into the FEL output. Under certain conditions, the two chirps cancel each other. The experimental result was compared with simulations and interpreted with SASE theory.  相似文献   

6.
The results of theoretical examination and comparative analysis of synchrotron radiation sources (specifically, undulators and X-ray free-electron lasers (FELs)) are presented. The problem of generation of shorter radiation pulses is prioritized; undulator systems and their corresponding FELs, which are considered to be the most promising in terms of generation of high-frequency ultrashort pulses of such radiation (in particular, in the X-ray range) are studied. The possibility of generation of higher harmonics is explored. The advantages and disadvantages of single-pass (with no reflecting elements) and multi-pass (with mirrors) FEL lasing schemes are revealed. The potential to reduce the duration of laser pulses produced by undulators and FELs and use them as sources of femtosecond pulses is investigated. The prospects for further development of X-ray free-electron lasers and the ways to improve the quality of their radiation with the given parameters are discussed.  相似文献   

7.
We propose a novel method to generate femtosecond and subfemtosecond photon pulses in a free-electron laser by selectively spoiling the transverse emittance of the electron beam. Its merits are simplicity and ease of implementation. When the system is applied to the Linac Coherent Light Source, it can provide x-ray pulses the order of 1 fs in duration containing about 10(10) transversely coherent photons.  相似文献   

8.
We report on a characterization of the chaotic optical field from a high-gain, self-amplified spontaneous-emission (SASE) free-electron laser. The temporal structure of the amplitude and phase are measured in a single-shot mode, with a resolution well below the coherence length, and the statistics over multiple pulses is determined. The measurement is in excellent quantitative agreement with the prediction based on analysis of random noise, and further verifies the chaotic nature of the SASE optical field.  相似文献   

9.
10.
Ultrashort pulses of microwave radiation have been produced in a dielectric-lined Cherenkov free-electron maser (FEM) amplifier. An intense initial seed pulse, due to coherent spontaneous emission (CSE), arises at the leading edge of the electron pulse. There is evidence to show that 3-4 cycle spikes are produced through the amplification of these seed pulses. A strong dependence of the start-up power on the rise time of the electron pulse has been found. The experimental results are verified by a theoretical analysis. Our study shows that amplification in a FEM amplifier is always initiated by CSE arising from the edge of the electron pulse when the rise time is comparable to the electromagnetic wave period.  相似文献   

11.
We report the first experimental implementation of a method based on simultaneous use of an energy chirp in the electron beam and a tapered undulator, for the generation of ultrashort pulses in a self-amplified spontaneous emission mode free-electron laser (SASE FEL). The experiment, performed at the SPARC FEL test facility, demonstrates the possibility of compensating the nominally detrimental effect of the chirp by a proper taper of the undulator gaps. An increase of more than 1 order of magnitude in the pulse energy is observed in comparison to the untapered case, accompanied by FEL spectra where the typical SASE spiking is suppressed.  相似文献   

12.
13.
14.
15.
To study the solid Cu ablation in vacuum, two different laser sources operating at 1064 and 308 nm wavelength are employed at similar values of laser fluences. The infrared laser is a Q-switched Nd:Yag having 9 ns pulse width (INFN-LNS, Catania), while the ultraviolet one is a XeCl excimer having 20 ns pulse width (INFN-LEA, Lecce). Both experiments produced a narrow angular distribution of the ejected material along the normal to the target surface. The ablation showed a threshold laser power density, of about 7 and 3 J/cm2 at 1064 and 308 nm, respectively, below which the ablation effect was negligible. The laser interaction produces a plasma at the target surface, which expands very fast in the vacuum chamber. Time-of-flight (TOF) measurements of the ion emission indicated an average ion velocity of the order of 4.7×104 and 2.3×104 m/s for the infrared and ultraviolet radiation, respectively. We also estimated approximately the corresponding temperature of the plasma from which ions originated, i.e. about 106 and 105 K for IR and UV wavelength, respectively. A discussion of the analysis of the ablation mechanism is presented. At the used laser power densities the produced Cu ions showed ionisation states between 1+ and 5+ in both cases.  相似文献   

16.
Samples of cw laser diode arrays (LDAs) with an output power higher than 60 W emitting in the spectral range of 808 nm are developed and fabricated. Main output parameters, including light–current, current–voltage characteristics, and emission spectra of a lot of 5 LDAs are measured.  相似文献   

17.
18.
19.
We report room-temperature amplified spontaneous emission and spectral narrowing at infrared wavelengths in solution-processed films made up of PbS quantum-dot nanocrystals. The results are relevant to optical amplification and lasing integrated upon a variety of substrates. The active optical medium operates at room temperature without any additional matrix material, providing an optical gain of 260 cm(-1) and a pump threshold of 1 mJ/cm(-2). Nanocrystals synthesized in an aqueous solution and stabilized by use of short ligands result in high quantum-dot volume fractions in solid films and in a redshift emission relative to absorption.  相似文献   

20.
利用修改的一维非定态程序,基于美国杰弗逊实验室(JLab)Demo自由电子激光装置的参数,对高功率自由电子激光振荡器稳定波长的反馈系统进行了数值模拟。电子微脉冲为高斯型分布,每个纵向网格中取16个模拟宏电子,不考虑电子束的能散度。结果表明:当无反馈时,腔内光功率和波长都可以在一定范围内稳定;加入反馈后,由于电子束能量的变化所引起的等效失谐对整个系统有着重要的影响,甚至可能导致电子和光场失去相互作用,从而使得装置不能工作。提出应该在光场达到饱和以后再启动稳定波长反馈系统。模拟结果证明,该实施方案是合理有效的,可以避免其对FEL运行的严重影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号