首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim of this paper is to compare a new vertical vibro-compaction machine, carried by a tracked vehicle of total weight 10.9 kN, with compactors using centrifugal, vertical and horizontal oscillators at the exciting force of 9.8 kN and at a frequency of 16 Hz. These were tested experimentally on a thick lift of decomposed weathered granite sandy soil. It was observed that the final amount of sinkage of the terrain surface using the vertical vibro-tracked vehicle was the greatest. The final distribution of dry density was almost uniform in depth and the values were the largest of all other maximum dry densities for centrifugal and horizontal vibro-tracked vehicles. As a result, the vertical vibro-tracked vehicle was verified theoretically from the analysis of the stress and the acceleration propagation to be an excellent and impressive new compaction machine for compacting thick lifts of soil stratum.  相似文献   

2.
The main purpose of this paper is to evaluate the effects of a jumping action of a tracked vehicle mounted with a vertical oscillator on vibro-compaction of a high lifted decomposed granite. A vibro-compaction test was executed using a model tracked vehicle of 4.9 kN weight under a condition of frequency of 16 Hz and load ratio of maximum vertical exciting force to vehicle weight of 0.2–2.0. As a result, it was observed that both the amount of sinkage of terrain surface and the dry density of soil increased hyperbolically with increment of the load ratio and the dry density distribution with depth became uniform for the whole depth of the soil stratum. It was confirmed that the volume shrinkage of soil was succeeded by the propagation of acceleration to deep stratum due to the jumping action and the dilatancy phenomenon due to an alternative shear stress. The optimum load ratio obtaining a maximum dry density at the frequency of 16 Hz was judged to be 2.0 within this experiment. In the application of these test results to an actual prototype tracked vehicle of 39.2 kN weight, it was estimated that the degree of compaction of a high lifted soil stratum of 90 cm became over 90% at the load ratio of 2.0.  相似文献   

3.
The aim of this research was to innovate a new compaction machinery by comparing experimentally the effects of a two-axle, two wheel road roller and a tracked vehicle on the compaction of a decomposed granite sandy soil with a high spreading lift. By measuring the amount of sinkage of the terrain surface, the dry density distribution versus depth using a cone penetrometer, the normal earth pressure distribution versus depth using a stress state transducer (SST), the effects of the road roller and the tracked vehicle on the increment of the soil dry density were considered theoretically. It was observed that the tracked vehicle showed a larger amount of sinkage and a larger dry density distribution versus depth than the roller. The ratio of shear stress to normal stress was still large enough at the deep stratum, so that an optimal shear strain was developed on the whole range of the high lifted stratum and it increased the soil compaction density due to the dilatancy effect.  相似文献   

4.
The compaction of a soil is one of the important construction operations that influences the durability of soil structure. Therefore, the measurement of soil density, used to judge the degree of compaction, has to be performed exactly. Since a compaction of a thick finishing layer could be executed with the enlargement of compaction machinery and the improvement of productivity, new equipment which can measure the soil density in a deep stratum has to be developed. In this paper, we propose a method of accurately estimating compacted soil density based on the three dimensional stresses measured in the ground during compaction by a stress state transducer (SST). A tracked vehicle mounted with a vertical oscillator was used to compact a decomposed granite soil of 45 cm depth. A model experiment was executed at a frequency that was varied from 16 to 25 Hz, setting the load ratio of maximum oscillating force to the vehicle weight (4.9 kN) to be 1.2, 1.6 and 2.0. The three dimensional stresses in the ground were measured by use of the SST. Comparing the dry density converted from cone penetrometer test results and the dry density estimated from Baily’s formula, the compacted soil density at the lowest soil stratum could be estimated by measuring earth pressure using SST.  相似文献   

5.
Slip sinkage effect in soil-vehicle mechanics   总被引:2,自引:0,他引:2  
The paper presents an analysis and quantitative evaluation of the slip sinkage and its effect on the tractive performance of wheeled and tracked vehicles in different soils. The results of this study indicated that to accurately predict the sinkage and motion resistance of a vehicle in a given soil and operating conditions, the slip sinkage effect should be taken into account. An effective analytical formula that takes into consideration the slip sinkage effect on sinkage of plates and vehicles is developed. The formula was validated in different soil conditions and compared with other formulae used in terramechanics for slip sinkage effect predictions.  相似文献   

6.
The interaction between vehicles and soils of varying properties and moisture contents can cause serious compaction and soil structure problems. This situation always confronts the farmer, who has to deal with the soil effects, and should be of foremost interest to agricultural machine manufacturers and dealers as well as other off-road vehicle users in order that they may employ the best vehicle configuration for various conditions.This study is oriented towards evaluating compaction behaviour under various loads, different soil conditions, number of passes, and tire sizes. Contour plots of change in dry density compared to the original density were obtained under the tire path cross sections for different loads, number of passes and soil moisture conditions.The increase in dry density change, determined for different numbers of passes, was sharp up to five passes and levelled off for further increases in the number of passes. Increase in dry density became as great as 30 pcf (0.48 g/cm3), illustrating the detrimental effect of repeated passes of a vehicle in the field.  相似文献   

7.
Analyses of the dynamic behaviour of a heavy vehicle during off-road operation are conducted under steady state condition. Three different numerical quarter-vehicle models (single point contact model, rigid wheel contact model and deformable wheel contact model) are introduced, and the simulation results are compared in order to find the most appropriate vehicle model. During the longitudinal travel of the vehicle, arbitrary ground profile is an input of vertical excitation to the vehicle. When ground deformation is included in the numerical model, the deformation filters the vertical excitation to the vehicle while the level of excitation varies depending on the soil deformability. Bekker's non-linear pressure/sinkage relationship is applied in modelling the ground behaviour. The simulations are conducted in the time domain and various surface roughness and ground deformability are applied in the ground/vehicle interaction during a parameter study. The ground deformation under the wheel acts like a non-linear spring during the vehicle movement and influences the vehicle vibration. If a vehicle mainly operates on off-road condition with high ground deformability lower value of damping is required in order to minimise the vertical body acceleration.  相似文献   

8.
The sinkage of the bearing tracks or wheels of a vehicle in soil induces a resistance to travel motion. Usually it is determined with methods based on the modelling of soil pressure-sinkage curves. This article presents a new method for modelling soil penetration tests as a result of experimental study of three standard soils. These soils have been chosen to represent the mechanical properties of a range of soils: a sand for frictional soils, a silt for cohesive soils and a silty sand for cohesive frictional soils. The models take into account the mechanical behaviour of soils where a small vertical sinkage can be assumed analogous to elastic behaviour, while for large sinkage, the analogy is with plastic behaviour. A New Model of Mobility (N2M) is proposed. A new equation relating the pressure p and the sinkage z is governed by four parameters which are constant for a specific soil in a given physical state. These parameters can be calculated with two sinkage tests made with two different plate diameters and are particularly stable: a small change of one of them involves a small change of the modelling. They are independent of the size of the sinkage plate and hence could pave the way for the extrapolation to the scale of full size vehicles. For the tested soils, comparison of the model results with experimental tests is very promising.  相似文献   

9.
This study aims to investigate the tractive performance of a two-axle, two-wheel vehicle with rear-wheel drive or brake and the compaction of a decomposed granite soil. The effects of traction or braking, the change of sinkage, the slip ratio of the front and rear roller, and the number of passes of the road roller were studied. A number of tests were conducted and the experimental data were compared with the theoretical analysis results. It was observed that the amount of sinkage on the front and rear roller took the minimum value when the front roller was in the unpowered rolling state and the slip ratio of the rear roller was almost zero. When the absolute value of the slip ratio of rear roller increased, the amount of sinkage on the front and rear rollers, the absolute value of the driven or braking force of the rear roller and the absolute value of effective tractive or braking effort of the road roller increased. When the front roller was in the unpowered rolling state and the rear roller was in the braking state at −5% skid, the compaction density of the soil was at a maximum.  相似文献   

10.
A mathematical model which predicts spatial motion of tracked vehicles on non-level terrain has been developed. The motion of the vehicle is represented by three translational and three rotational degrees of freedom. In order to incorporate the inelastic deformation of soil, a soil-track interaction model is introduced; this constitutive model relates the traction exerted on the track by soil to the slip velocity and sinkage of the track. The model is based upon available soil plasticity theories and furnishes mechanics-based interpretation of Bekker's empirical relations. For planar motion the proposed model reduces to the existing equations of motion by introducing kinematic constraints on the vertical translation, pitching and rolling degrees-of-freedom.  相似文献   

11.
Bekker’s semi-empirically derived equations allow the designers of off-road vehicles to understand and predict vehicle mobility performance over deformable terrains. However, there are several underlying assumptions that prevent Bekker theory from being successfully applied to small vehicles. Specifically, Bekker’s sinkage and compaction resistance equations are inaccurate for vehicles with wheel diameters less than approximately 50 cm and normal loading less than approximately 45 N. This paper presents a modified pressure-sinkage model that is shown to reduce sinkage and compaction resistance model errors significantly. The modification is validated with results from 160 experiments using five wheel diameters and three soil types.  相似文献   

12.
As longitudinal slip affects vehicle–pavement interactions on roads and hard surfaces, so too does it play an important role in interactions between vehicles and soft terrains, including snow. Although many slip-based models have been developed recently for tire–snow interactions (e.g., [1] and references cited therein), these models have only been partially validated, due to a lack of relevant experimental data. This paper presents comprehensive data from tests that were performed using a newly-developed test vehicle traversing natural snowy terrain, over a wide range of values for longitudinal slip, vertical load and torque via an effective accelerate/brake maneuver. Drawbar pull, motion resistance, wheel states and tire stiffness were presented as a function of slip; tire sinkage was obtained using a laser profilometer; strength and depth of snow were found using a snow micropenetrometer. The effects of the rear tire going over snow compacted by the front tire were also studied. The maximum traction force normalized by the vertical load is found to be ≈0.47, maximum motion resistance normalized by the vertical load is ≈0.4. Comparison of the trend and order-of-magnitude of test results with those from existing slip-based numerical model [1] shows good comparison in motion resistance, tire sinkage, and longitudinal stiffness, but indicates that a better traction model is needed to improve the comparison.  相似文献   

13.
Modeling and simulation of vehicles in sand is critical for characterizing off-road mobility in arid and coastal regions. This paper presents improved algorithms for calculating sinkage (z) of wheeled vehicles operating on loose dry sand. The algorithms are developed based on 2737 tests conducted on sand with 23 different wheel configurations. The test results were collected from Database Records for Off-road Vehicle Environments (DROVE), a recently developed database of tests conducted with wheeled vehicles operating in loose dry sand. The study considers tire diameters from 36 to 124 cm with wheel loads of 0.19–36.12 kN. The proposed algorithms present a simple form of sinkage relationships, which only require the ratio of the wheel ground contact pressure and soil strength represented by cone index. The proposed models are compared against existing closed form solutions defined in the Vehicle Terrain Interface (VTI) model. Comparisons suggest that incorporating the proposed models into the VTI model can provide comparable predictive accuracy with simpler algorithms. In addition to simplicity, it is believed that the relationship between cone index (representing soil shear strength) and the contact pressure (representing the applied pressure to tire-soil interface) can better capture the physics of the problem being evaluated.  相似文献   

14.
To determine the tractive performance of a bulldozer running on weak ground in the driven state, the relations between driving force, drawbar pull, sinkage, eccentricity and slip ratio have been analysed together with each energy balance; effective input energy, sinkage deformation energy, slippage energy and drawbar pull energy. It is considered that the thrust is developed not only on the main straight part of the bottom track belt but also on parts of the front idler and rear sprocket, and the compaction resistance is calculated from the amount of slip sinkage. For a given vehicle and soil properties, it is determined that the drawbar pull increases directly with the slip ratio and reaches about 70% of the maximum driving force. The compaction resistance reaches about 13% of the maximum driving force. The sinkage of the rear sprocket, the eccentricity, and the trim angle increase with the increment of slip ratio due to the slip sinkage. These analytical results have been verified experimentally. After determining the optimum slip ratio to obtain a maximum effective tractive power, it is found that a larger optimum drawbar pull at optimum contact pressure could be obtained for a smaller eccentricity of vehicle center of gravity and a larger track length-width ratio under the same contact area.  相似文献   

15.
The effect of velocity on rigid wheel performance   总被引:1,自引:0,他引:1  
A simulation model to predict the effect of velocity on rigid-wheel performance for off-road terrain was examined. The soil–wheel simulation model is based on determining the forces acting on a wheel in steady state conditions. The stress distribution at the interface was analyzed from the instantaneous equilibrium between wheel and soil elements. The soil was presented by its reaction to penetration and shear. The simulation model describes the effect of wheel velocity on the soil–wheel interaction performances such as: wheel sinkage, wheel slip, net tractive ratio, gross traction ratio, tractive efficiency and motion resistance ratio. Simulation results from several soil-wheel configurations corroborate that the effect of velocity should be considered. It was found that wheel performance such as net tractive ratio and tractive efficiency, increases with increasing velocity. Both, relative wheel sinkage and relative free rolling wheel force ratio, decrease as velocity increases. The suggested model improves the performance prediction of off-road operating vehicles and can be used for applications such as controlling and improving off-road vehicle performance.  相似文献   

16.
Previous field studies have shown the influence of turning vehicles on rut formation or sinkage. In order to further investigate the relationships, laboratory tests were conduced on a 14.5–20.3 6-PR trailer tire and an Armored Personnel Carrier (APC) track shoe in sand. Lateral displacements, and resulting lateral forces, were applied to the tire and track shoe under constant normal forces. The tire was pulled laterally and the track shoe was pulled back and forth to represent actual movement during vehicle turning. Results show that the lateral force and lateral displacement generated by turning maneuver affect sinkage severely for wheeled and tracked vehicles. The final sinkage caused by the lateral force for the tire is 3–5 times to the static sinkage. For the track shoe, the final sinkage caused by the lateral displacement is about three times to the static sinkage.  相似文献   

17.
Handling and stability performance of four-track steering vehicles   总被引:1,自引:0,他引:1  
The advantages of using a four-track steering (4TS) vehicle are less slippage and sinkage of the tracks in turning, compared with conventional skid-steering tracked vehicles. This paper describes the steerability and the mobility of the 4TS vehicle for on- and off-road conditions. Mathematical models have also been developed to predict the effects of various types of differential torque transfer on the handling behavior of a vehicle. A turning vehicle motion was simulated and compared with the experimental data. The results demonstrate that the proposed mathematical model could accurately assess the steering performance of a 4TS vehicle.  相似文献   

18.
Our previous research has revealed that, for vehicles with independently driven wheels, a torque distribution based on the ratio of the vertical load of each wheel to the total vehicle load is efficient for driving on flat ground. In this research, this method of torque distribution was extended to electric off-road vehicles driving on rough ground. In order to examine the driving efficiency of these vehicles, a numerical vehicle model was constructed in the pitch plane. Simulations using the numerical vehicle model on rough ground were conducted with a proposed torque distribution and control method. The numerical results from these simulations were compared with those of a conventional vehicle to evaluate the driving efficiency and trafficability on ground with various profiles. A comparison between the simulations demonstrated that the proposed method of torque distribution to the front and rear wheels based on the ratio of the vertical load is efficient for driving on rough ground.  相似文献   

19.
Experimental results are presented for a towed 6–16 smooth tyre and the same size rigid steel wheel in three types of sands covering a wide range of particle size distribution, two dry and one submerged sands. Their performance was compared at high and low tyre inflation pressures, two vertical loads and a wide range of soil compaction for each sand. The sand performance prediction number, Ns, proposed by the U.S. Army Engineer Waterways Experiment Station (W.E.S.) was then applied to compare with the measured results for the tyre. It was found that in all the three sands the coefficient of rolling resistance was substantially underestimated by the W.E.S. method. However Ns = 10–20 was found to be very important overall criterion for towed tyres on sand. The correlation between the skid and the fractional sinkage of the rigid wheel and the tyre was also examined.  相似文献   

20.
The relationship between contact pressure and sinkage must be represented by a mathematical model to estimate the sinkage and the motion resistance due to a vehicle. In this study an approximate and simple pressure-sinkage model is proposed. This model takes into account the effect of the size of the penetration plate on soil response, and includes two soil values that can be obtained by a single plate penetration test. It is submitted that the sinkage and the motion resistance of a tracked vehicle can be estimated by means of the proposed model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号