首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The electrospray ionisation-ion trap mass spectrometry (ESI-MSn) of selected hypnotic drugs, i.e. zopiclone, zolpidem, flunitrazepam and their metabolites have been investigated. Sequential product ion fragmentation experiments (MSn) have been performed in order to elucidate the degradation pathways for the [M+H]+ ions and their predominant fragment ions. These MSn experiments show certain characteristic fragmentations in that functional groups are generally cleaved from the ring systems as neutral molecules such as H2O, CO, CO2, NO2, amines and HF. When an aromatic entity is present in a drug molecule together with a nitrogen-containing saturated ring structure as with zopiclone and its N-desmethyl metabolite fragmentation initially occurs at the latter ring with the former being resistant to fragmentation. The structures of fragment ions proposed for ESI-MSn can be supported by electrospray ionisation-quadrupole time-of-flight mass spectrometry (ESI-QTOF-MS).These molecules can be identified and determined in mixtures at low ng/ml concentrations by the application of liquid chromatography (LC)-ESI-MSn which can be used for their analysis in saliva samples.This paper includes a tabulation of mass losses/signals at low m/z values for these hypnotic drugs and many others in recent publications which will be of value in the characterisation of drug metabolites of unknown structure and also natural product pharmaceuticals isolated from plants, etc.  相似文献   

2.
Tsai JL  Wu WS  Lee HH 《Electrophoresis》2000,21(8):1580-1586
A rapid, sensitive method for the determination of morphine and amphetamine was developed using capillary zone electrophoresis coupled with electrospray interface (ESI), ion-trap tandem mass spectrometry (CE-ESI-MS2). Morphine and amphetamine were separated in 20 mM ammonium acetate buffer (pH 6.6) and detected by ion-trap mass detector in different analytical time segments (0-6.25 min for amphetamine and 6.25-12.0 min for morphine) in which the tune file for each compound was used separately. Molecular ions of morphine (m/z 286) and amphetamine (m/z 136) were detected at 5.77 and 6.83 min, respectively, while product ions of MS2 for each compound (m/z 229, 201 for morphine and m/z 119 for amphetamine) were detected almost exactly at the same time with their parent compounds. The limits of detection (LOD) for MS2 determination were 30 and 50 ng/mL for amphetamine and morphine, respectively, with an S/N ratio of 3. For more sensitive detection of morphine, the sample was injected for a longer time (i.e., 80 s) and hydrodynamically transported into a CE capillary for MS detection. Morphine and its product ion appear at 0.36 and 0.39 min on the ion chromatogram, respectively, with a five-fold increase of detection sensitivity (LOD, 10 ng/mL). The CE-MS system thus established was further applied for forensic urine samples screened as morphine-positive by fluorescence polarization immunoassay (FPIA). These results indicated the feasibility of CE-ESI-MS2 for confirmative testing of morphine in urine sample.  相似文献   

3.
A capillary electrophoresis (CE) method coupled to electrospray ionization ion trap tandem mass spectrometry (ESI-IT-MS/MS) is described for the rapid analysis of carnitine, acetylcarnitine, and propionylcarnitine in human plasma. Optimization of the procedure was achieved by a reduced sample pretreatment and after examining several physicochemical parameters that influence both the CE separation and the MS analytes detection. The analysis of total carnitine in human plasma after hydrolysis of short-chain metabolites is also shown. The analysis of carnitine and metabolites was obtained in less than 10 min using a 200 mM ammonium formate buffer, pH 2.5, with high sensitivity and specificity using the MS detection in product ion scan mode. The method was tested for quantitative recovery using dialyzed human plasma as matrix and showed linearity in the concentrations ranges 20–160, 1–32, and 0.25–8 μM for carnitine, acetylcarnitine, and propionylcarnitine with (squared) correlation coefficients of 0.9984, 0.9995, and 0.9991, respectively. The intraday and intermediate analysis repeatability and accuracy are within 15% of relative standard deviation (RSD) at low, medium, and high concentration and within/or slight exceeding 20% at the lower limit of quantitation (LLOQ). The method is sensitive for determining carnitine and its metabolites in human plasma with high specificity.  相似文献   

4.
Chen CJ  Li FA  Her GR 《Electrophoresis》2008,29(10):1997-2003
A multiplexed CE-MS interface using four low-flow sheath liquid ESI sprayers has been developed. Because of the limited space between the low-flow sprayers and the entrance aperture of the ESI source, multichannel analysis is difficult using conventional rotating plate approaches. Instead, a multiplexed low-flow system was achieved by applying an ESI potential sequentially to the four low-flow sprayers, resulting in only one sprayer being sprayed at any given time. The synchronization of the scan event and the voltage relays was accomplished by using the data acquisition signal from the IT mass spectrometer. This synchronization resulted in the ESI voltage being sequentially applied to each of the four sprayers according to the corresponding scan event. With this design, a four-fold increase in analytical throughput was achieved. Because of the use of low-flow interfaces, this multiplexed system has superior sensitivity than a rotating plate design using conventional sheath liquid interfaces. The multiplexed design presented has the potential to be applied to other low-flow multiplexed systems, such as multiplexed capillary LC and multiplexed CEC.  相似文献   

5.
Glycoalkaloids are naturally occurring nitrogen-containing compounds present in many species of the family Solanaceae, including cultivated and wild potatoes (Solanum spp.), tomatoes (Lycopersicon spp.), etc. These compounds have pharmacological and toxicological effects on humans due to their significant anticholinesterase activity and disruption of cell membranes. Herein is reported the development of a capillary electrophoresis (CE) method using nonaqueous (NA) separation solutions in combination with ion trap mass spectrometry (MS and MS/MS) detection for the identification and quantification of glycoalkaloids and their relative aglycones. A mixture 90:10 v/v of MeCN-MeOH containing 50 mM ammonium acetate and 1.2 M acetic acid (applied voltage of 25.5 kV) was selected as a good compromise for the separation and detection of these compounds. The electrospray MS measurements were carried out in the positive ionization mode using a coaxial sheath liquid, methanol-water (1:1) with 1% of acetic acid at a flow rate of 2.5 microL/min. Under optimized experimental conditions, the predominant ion was the protonated molecular ion ([M+H](+)) of solanidine (m/z = 398), tomatidine (m/z = 416), chaconine (m/z = 852), solanine (m/z = 868), and tomatine (m/z = 1034). MS/MS experiments were carried out systematically by changing the relative collisional energy and monitoring the intensities of the fragment ions that were not high enough to allow better quantification than with the mother ions. The method was used for analyzing glycoalkaloids in potato extracts.  相似文献   

6.
A new method for the identification of oligosaccharides obtained by enzymatic digestion of hyaluronic acid (HA) with bacterial hyaluronidase (HA lyase, E.C. 4.2.2.1, from Streptococcus agalactiae) using online capillary electrophoresis/electrospray mass spectrometry (CE/ESI-MS) is presented. A fused-silica capillary coated with polyacrylamide was used with a 40 mM ammonium acetate buffer at pH 9.0 and a separation voltage of +30 kV applied to the inlet. Separation was achieved for oligosaccharides containing 4-16 monomers. The migration behavior follows the chain length of the oligomers, regardless of charge state. However, no linear relationship was found for the relation between mobility and chain length. Using an ion trap mass analyzer, complementary structural information was obtained by MS/MS and MS(n) experiments.  相似文献   

7.
8.
Capillary zone electrophoresis (CZE) with UV detection was used to determine vanadium species. Nitrilotriacetic acid (NTA), hydroxyethylethylenediaminetriacetic acid (HEDTA), ethylenediaminetetraacetic acid (EDTA), diethylenetriaminepentaacetic acid (DTPA), ethylene glycol-bis(2-aminoethylether)-tetraacetic acid (EGTA) and 2,6-pyridinedicarboxylic acid (PDCA) were investigated to determine whether these ligands formed stable anionic complexes with vanadium. Of all the ligands studied HEDTA was the most suitable ligand because it gave the largest UV response with reasonable migration time. Electrospray mass spectrometry (ES-MS) was used to confirm the formation of [VO2(HEDTA)]2− and [VO(HEDTA)]1− in solution. An electrolyte containing 25 mM phosphate, 0.25 mM tetradecyltrimethylammonium bromide (TTAB) at pH 5.5 was optimum for the separation of these anionic vanadium complexes. Sample stacking techniques, including large-volume sample stacking (LVSS) and field-amplified sample injection (FASI), were tested to improve the sensitivity. Best sensitivity was obtained using FASI, with detection limits of 0.001 μM, equivalent to 0.4 μg L−1, for [VO2(HEDTA)]2− and 0.01 μM, equivalent to 3.4 μg L−1 for [VO(HEDTA)]1−. The utility of the method for the speciation of V(IV) and V(V) was demonstrated using ground water samples.  相似文献   

9.
Various noncovalent complexes between native and derivatized cyclodextrins (CDs) and barbiturates were studied using capillary electrophoresis (CE) and electrospray ionization mass spectrometry (ESI-MS). This paper involves the study of four aspects of CD-barbiturate noncovalent inclusion complexes. The first study focused on determining the formation of CD-barbiturate inclusion complexes in ESI-MS. This determination was accomplished by the comparison of migration data from CE with ESI-MS inclusion complex peak abundances, which were found to be complementary. The second study found the possibility of predicting native beta-CD mediated CE elution orders for barbiturates using data from ESI-MS. A third study focused on the formation of barbiturate inclusion complexes with derivatized beta-CD and gamma-CD. As part of this study, the effect of the extent of side chain substitution on native CD complexation behavior was investigated. The results indicated that the number of side chains on the CD does not affect the formation of barbiturate complexes with the hydrophobic CD cavity. Finally, a comparison of the hydroxypropyl-beta-CD-barbiturate and hydroxypropyl-gamma-CD-barbiturate complexes in CE and ESI-MS was made to study the relationship between strength of drug-CD binding and enantioresolution. The results from the above studies indicated that the gas phase and the solution state complexes showed comparable behavior indicating that similar interactions played a role in stabilizing these complexes. While it was possible to use the ESI-MS data to determine drug binding to the CDs, it was not possible to predict whether a separation of the enantiomers of a chiral barbiturate would occur. However, the ESI-MS data could be used to eliminate certain CDs from consideration as chiral selectors.  相似文献   

10.
A sensitive and rapid liquid chromatography/electrospray ion trap mass spectrometry (LC/MS/MS) method has been developed for the quantitative determination of medroxyprogesterone acetate (MPA) in human plasma. Plasma samples (1.0 mL) were simply extracted with pentane and the extracts were analyzed by HPLC with the detection of the analyte in the selective reaction monitoring (SRM) mode. The determination of MPA was accurate and reproducible, with a limit of quantitation of 0.05 ng/mL in plasma. The standard calibration curve for MPA was linear (r = 0.998) over the concentration range 0.05-6.0 ng/mL in human plasma. Analysis precision over the concentration range of MPA was lower than 18.8% (relative standard deviation, RSD) and accuracy was between 96.2 and 108.7%.  相似文献   

11.
The determination of cobalamins using capillary electrophoresis inductively coupled plasma mass spectrometry (CE-ICP-MS) was investigated. Both capillary zone electrophoresis (CZE) and micellar electrokinetic chromatography (MEKC) modes of operation were studied. The optimal separation of four cobalamin species (cyanocobalamin, hydroxocobalamin, methylcobalamin, and 5′-deoxyadenosylcobalamin) and a potentially harmful corrinoid analogue (cobinamide dicyanide) was obtained using CZE at a pH of 2.5. Both 20 mM phosphate and 20 mM formate buffers were used with success, although the formate buffer provided improved resolution. The CZE-ICP-MS method was used to quantify cyanocobalamin in a vitamin supplement and the analytical results were in good agreement (±5%) with values obtained by ICP-MS for total Co levels. The solution detection limits for cobalamins using CZE-ICP-MS were approximately 50 ng/ml. MEKC was found to be useful for the screening of vitamin preparations because it provided a rapid means of distinguishing cyanocobalamin (the form most commonly used in vitamin preparations) from free cobalt. The separation of free cobalt and cyanocobalamin using MEKC was achieved in less than 10 min.  相似文献   

12.
Non-covalent complexes between three derivitized cyclodextrins (CD's) and six local anesthetics were studied using capillary electrophoresis (CE) and electrospray ionization mass spectrometry (ESI-MS). The CE study was performed using the complete filling technique (CFT). A comparison between the migration data from CE and ESI-MS inclusion complex peak abundances was made representing the association between local anesthetics and CD's in the solution and the gas phase, respectively. The results from this study showed comparable behavior of the complexes in the CE and mass spectrometer, indicating similarity in the parameters controlling the stability of these complexes. Therefore, the formation of specific non-covalent complexes, as shown in this study, could be used to predict the behavior of a complexing agent with a substrate in the solution phase by observing data obtained from ESI-MS.  相似文献   

13.
Capillary electrophoresis–electrospray tandem mass spectrometry (CE‐ESI/MS/MS) is a simple and highly sensitive method for quantifying seven urinary androgen glucuronides. The urine samples were diluted and filtered through a membrane filter, and the filtrate was injected into a CE‐MS/MS system without further sample preparation steps such as extraction and derivatization. The calibration ranges were 0.01–5 µg/mL for glucuronides of androsterone and 11β‐OHAn‐3G, and 5–500 ng/mL for glucuronides of 11‐ketoAn, DHEA, testosterone, epitestosterone and DHT. The linearity of the method was 0.992–0.998, and the limits‐of‐detection at a signal‐to‐noise ratio of 3 were 5–10 ng/mL. The coefficients of variation were in the range of 4.0–9.0% for intra‐day assay and 4.1–9.8% for inter‐day assay. The proposed method may be applicable to metabolic profiling in both quantitative and qualitative analysis. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

14.
Ping Tong  Lan Zhang  Yu He  Jintian Cheng 《Talanta》2010,82(4):1101-1106
In this paper, a rapid and effective method based on capillary zone electrophoresis (CZE) coupled with electrospray ionization mass spectrometry (ESI-MS) was established for the trace analysis of microcystin (MC) isomers in crude algae sample. The experimental conditions including the composition, acidity and concentration of buffer, separation voltage, injection time, and MS detection parameters were investigated in detail. A capillary separation system was as follows: a uncoated fused-silica capillary tube (50 μm i.d. × 90 cm), 40 mmol L−1 ammonium acetate solution (pH 9.86) as running buffer, 25 kV as separation voltage, 20 kV × 3 s water first and 20 kV × 20 s for sample injection. Mass analysis was performed in ESI source, with sheath gas temperature 150 °C, sheath gas pressure 10 psi, and sheath gas flow 6 L min−1. And sheath liquid was 7.5 mmol L−1 acetic acid in 50% isopropanol-water (3 μL min−1). Protonation and ammonium adduct molecular ions m/z 506.9 (MC-LR) and 532.0 (MC-YR) were used for the quantification of MCs. Under these conditions, two MCs were baseline separated within 9 min, the calibration curves were obtained in the range of 0.11-10.0 μg mL−1 and 0.16-10.5 μg mL−1 for MC-LR and MC-YR, respectively. Meanwhile, limits of detection were 0.05 and 0.08 μg mL−1 for MC-LR and MC-YR, respectively. The recoveries for the two MCs were in the range of 95.8-108%. The developed approach had been successfully applied to the analysis of MCs in crude algae samples.  相似文献   

15.
Technical grade diethylene-triaminepentakis(methylenephosphonic acid) (I), dihexamethylene-triaminepentakis(methylenephosphonic acid) (II), ethylene-diaminetetrakis(methylenephosphonic acid) (III), hexamethylene-diaminetetrakis(methylenephosphonic acid) (IV), amino-tris(methylenephosphonic acid) (V), hydroxyethyl-aminobis(methylenephosphonic acid) (VI), 1-hydroxyethylidene-1,1-diphosphonic acid (VII), and 2-phosphonobutane-1,2,4-tricarboxylic acid (VIII) were characterized by ion trap mass spectrometry with electrospray ionization (ESI-ITMS). Using the negative ion mode and acid and alkaline media, peak series corresponding to the nominal compounds and to impurities with a lower number of phosphonate groups were distinguished in I-V. Each series was constituted by [M - nH + (n - 1)Na](-) peaks and peaks produced from them by losses of water, H(3)PO(3)(or water plus HPO(2)), and combined losses. For each [M - nH + (n - 1)Na](-) peak, the number of losses coincided with the number of phosphonate groups not bound to sodium ions minus one (the group bearing the charge). Owing to the hydroxyethyl group, the spectrum of VI was dominated by the formation of intermolecular esters, with both losses and gains of water according to [nM - H +/- mH(2)O](-). A series of [M - nH + (n - 1)Na](-) peaks were observed for VII and VIII, showing in the latter case that the carboxylate groups may also form adducts with sodium ions. Losses of water and H(3)PO(3)were observed in VII, whereas losses of water, CO(2), and HPO(3) were seen in VIII. The reaction pathways leading to the production of the observed ions are described. The nominal compounds and the impurities were also separated and identified by capillary electrophoresis with ESI-ITMS detection.  相似文献   

16.
Plasmatic chlorophacinone is commonly measured with liquid chromatographic assay, which convenient but lacks sensitivity and selectivity and usually requires ion pair reagents to reduce the chromatographic tailed peak. In this paper, a novel method using eluent generator reagent‐free ion chromatography coupled with electrospray ionization ion trap mass spectrometric detection for the determination of chlorophacinone in plasma has been developed. After samples were extracted with 10% (v/v) methanol in acetonitrile and cleaned by solid‐phase extraction, chromatographic separation was performed on an IonPac® AS11 analytical column (250 × 4.0 mm) using 40.0 mmol/L KOH containing 10% (v/v) methanol as organic modifier. Quantification was performed by negative electrospray ionization in multiple reaction monitoring mode. The transition m/z 373 → 201 was for the quantification ion; the transitions m/z 373 → 172 and m/z 373 → 145, as well as the isotope ions m/z 375 and m/z 203, were for the qualitative ions. All the method parameters were validated. It was confirmed that this method can be used in clinical diagnosis and forensic toxicology. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

17.
A method based on tryptic digestion, ultrafiltration and capillary electrophoresis/mass spectrometry (CE/MS) has been developed for the analysis of the glycosylation pattern in the phospholipase A2 (PLA) of individual honeybees. Without reducing the disulfide bonds, PLA was digested with trypsin and filtered with a 3 kDa molecular weight (MW) cut-off membrane. With this procedure, the glycopeptides could be isolated from the nonglycosylated peptides. After tryptic digestion and ultrafiltration, the disulfide bonds were reduced before analysis by CE. To reduce the adsorption, CE separation was performed on successive multiple ionic-polymer (SMIL) polybrene (PB) coated capillary columns. The SMIL-PB columns allowed partial separation of the glycopeptides and eight glycopeptides were identified by on-line coupling of CE with electrospray ionization (ESI) mass spectrometry. The analysis of phospholipase A2 from the venom of individual bees indicated that the variation and relative abundances of different glycopeptides were similar between the younger and the older bees.  相似文献   

18.
A simple method for the simultaneous identification and quantification of four 2,5-methylenedioxy derivatives of 4-thioamphetamine (ALEPH series) in plasma samples was developed. The method consists of solid-phase extraction (SPE) using a Bond Elut C(18) cartridge and capillary electrophoresis coupled with electrospray ionisation mass spectrometry (CE/ESI-MS). The SPE method used required only simple steps and provided a clean extract from which identification of each drug was feasible, even at low concentrations. The method was validated according to international guidelines. The calibration curves were linear over the concentration range of 50 to 1000 ng/mL for all drugs with correlation coefficients that exceeded 0.998. The lower limits of detection of the drugs were 23-43 ng/mL. The absolute recoveries for the drugs were 64-92% and 75-96% at concentrations of 100 and 500 ng/mL, respectively. The validation data (precision, accuracy, and recovery) show the reproducibility and selectivity of the method. This clean and simple method allows the routine detection of designer drugs such as thioamphetamines which may become a serious problem in the control of illegal drugs.  相似文献   

19.
Capillary electrophoresis (CE) has been combined with atmospheric pressure photoionization (APPI) and electrospray ionization (ESI) for mass spectrometric (MS) detection. Separation conditions using potassium phosphate buffer and ammonium formate buffer have been compared for analysis of eleven pharmaceutical bases. The results showed improvements in separation efficiency and peak symmetry when phosphate buffer was used. The low flow in CE may enable utilization of these advances with MS detection. Compared with ESI, the APPI technique provided a cluster-free background. The enhanced signal-to-noise ratio in the total ion current (TIC) and the reduced spectral background indicated that the APPI process is less affected by non-volatile salts in the CE buffers. This results in a wider range of choice of CE buffers in CE/MS analysis when APPI is the ionization method.  相似文献   

20.
Established high-throughput proteomics methods provide limited information on the stereostructures of proteins. Traditional technologies for protein structure determination typically require laborious steps and cannot be performed in a high-throughput fashion. Here, we report a new medium throughput method by combining mobility capillary electrophoresis (MCE) and native mass spectrometry (MS) for the 3-dimensional (3D) shape determination of globular proteins in the liquid phase, which provides both the geometric structure and molecular mass information of proteins. A theory was established to correlate the ion hydrodynamic radius and charge state distribution in the native mass spectrum with protein geometrical parameters, through which a low-resolution structure (shape) of the protein could be determined. Our test data of 11 different globular proteins showed that this approach allows us to determine the shapes of individual proteins, protein complexes and proteins in a mixture, and to monitor protein conformational changes. Besides providing complementary protein structure information and having mixture analysis capability, this MCE and native MS based method is fast in speed and low in sample consumption, making it potentially applicable in top–down proteomics and structural biology for intact globular protein or protein complex analysis.

Using native mass spectrometry and mobility capillary electrophoresis, the ellipsoid dimensions of globular proteins or protein complexes could be measured efficiently.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号