首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The crystal structure of catena-bis(2-thiobarbiturato-O,S)diaquacadmium (C8H10CdN4O6S2) n (I), [Cd(H2O)2(HTBA)2] n (C4H4N2O2S is 2-thiobarbituric acid, H2TBA) has been determined. The crystals of compound I are triclinic, a = 6.9433(3) Å, b = 7.2257(3) Å, c = 7.4047(3) Å, α = 88.559(2)°, β = 75.346(2)°, γ = 111.687(1)°, V = 331.05(3) Å3, space group $P\bar 1$ , Z = 1. The Cd2+ ion is coordinated to the two oxygen atoms of water molecules and the two oxygen and two sulfur atoms of four HTBA? ions at the vertices of an octahedron. Octahedra are linked by bridging μ2-HTBA?-O,S ions into infinite chains. Intermolecular hydrogen bonds form infinite chains. The structure is also stabilized by the π-π interaction of HTBA? ions.  相似文献   

2.
2,4,6-Tris(2-pyridyl)-1,3,5-triazine (tptz) undergoes hydrolysis in the presence of copper(II) acetate affording bis(2-pyridylcarbonyl)amido-copper(II) and free 2-pyridylcarboxylic anion. Two compounds of formulas [Cu(NC5H4COO)2]·2H2O (1) and [Cu(NC5H4CO)2N(tptz)](N(CN)2)·7H2O (2), where NC5H4COO? and (NC5H4CO)2N? are 2-pyridylcarboxylate and bis(2-pyridylcarbonyl)amido-anion, respectively, were obtained from methanol/ethanol solution of tptz with copper acetate; they were characterized by element analysis and single crystal X-ray diffraction method. Single crystal XRD analysis shows that in complex 1 coordination number around Cu atom is 4 with distorted square-planar coordination geometry and in complex 2 coordination number around Cu atom is 6 with distorted octahedral geometry. Crystal data for 1: a = 5.1359(10) Å, b = 7.6471(15) Å, c = 9.2303(18) Å, α = 74.90(3)°, β = 84.36(3)°, γ = 71.37(3)°, space group P1, crystal system triclinic, Z = 1, V = 331.6(1) Å3, d calc = 1.721 g/cm3. Crystallographic data for 2: space group C2/c, crystal system monoclinic, a = 23.976(5) Å, b = 15.465(3) Å, c = 18.649(4) Å, β = 92.66(3)°, V = 6907(2) Å3, d calc = 1.0448 g/cm3, Z = 4.  相似文献   

3.
The diamines PtbipyCl2, and PtenCl2 and their aqua and hydroxy derivatives react with acetonitrile to give the Pt(II) acetamidates [Pt(2,2′-bipy)(NHCOCH3)2] · 4.125 H2O (I) and [enPt(μ-NHCOCH3(μ-OH)Pten](NO3)2 · H2O (II), which are characterized by X-ray diffraction. The crystals of I are triclinic, a = 7.137(10) Å, b = 12.655(3) Å, c = 21.914(6) Å, α = 81.82(2)°, β = 82.12(2)°, γ = 77.72(2)°, V = 1908.6(7) Å3, space group P $\overline 1 $ , Z = 4, R = 0.033 for 3700 reflections. Complex I is a mononuclear acetamidate with terminal (NHCOCH3)? ligands. The crystals of II are monoclinic, a = 11.413(2) Å, b = 10.981(2) Å, c = 14.385(3) Å, β = 105.90(3)°, V = 1733.8(6) Å3, space group P21/n, R = 0.028 for 2797 reflections. Complex II is a dimer with bridging (NHCOCH3)? and (OH)? groups. The Pt-Pt distance is 3.1667(7) Å.  相似文献   

4.
A new complex [Dy2(Pht)2(HPht)2(Phen)2(H2O)4] (I), where Pht2? = dianion of o-phthalic acid; HPht? = mono-anion of o-phthalic acid; Phen = 1,10-phenanthroline, has been synthesized and the crystal structure was determined by X-ray crystallography. The I crystallizes in the triclinic system, space group $P\bar 1$ with lattice parameters a =10.1126(3) Å, b =10.7029(3) Å, c = 11.9360(3) Å, α = 90.2260(10)°, β = 99.5340(10)°, γ = 100.9810(10)°, V = 1249.87(6) Å3, Z = 2, ρcalcd = 1.881 mg m?3. The photophysical property of I has been studied with excitation and emission spectra.  相似文献   

5.
Complex [Eu2(HTBA)6(H2O)6] n (I), where H2TBA is 2-thiobarbituric acid C4H4N2O2S, is synthesized. Its structure is determined by X-ray diffraction analysis (CIF file CCDC 987519). The crystals of complex I are monoclinic: a = 14.1033(4) Å, b = 10.0988(4) Å, c = 15.4061(5) Å, β = 110.003(1)°, V = 2061.9(1) Å3, space group P2/n, Z = 2. All three independent ligands HTBA? are coordinated to Eu3+ through oxygen atoms. Six HTBA? ions (two terminal and four bridging) and two water molecules are coordinated to one of the independent Eu3+ ions. The second Eu3+ ion is bound to four bridging HTBA? ions and four water molecules. The coordination polyhedra are square antiprisms. The bridging HTBA? ions join the antiprisms into layers. The structure is stabilized by numerous hydrogen bonds and the π-π interaction between HTBA?.  相似文献   

6.
The ion-selective properties of 1,8-bis[2-(dihydroxyphosphinyl)phenoxy]-3,6-dioxaoctane (H4L3) have been studied and its potentiometric selectivity coefficients have been determined. New complexes [Cu(H4L3)(H2O)3][(H2L3)(H2O)] (I) and Zn(H4L3)(H2L3) · 3H2O, and Cu(H2L3) · 2(H2O) have been synthesized and characterized. The crystal and molecular structure of I has been determined by X-ray crystallography and vibrational spectroscopy. The crystals are monoclinic, a = 10.279(5) Å, b = 26.532(13) Å, c = 8.399(4) Å, β = 99.270(8)°, V = 2260.8(7) Å3, Z = 2, space group Cm, R = 0.0347 for 4325 reflections with I > 2σ(I). Ionic compound I is composed of the [Cu(H4L3)(H2O)3]2+ complex cations and [(H2L3)(H2O)]2? anions. In the cation, the Cu2+ cation located in the m plane is bound to a tetragonal pyramidal (TP) array. The equatorial plane of the TP is formed by two phosphoryl oxygen atoms of the podand (Cu(1)-O, 1.921(2) Å) and two O atoms of two water molecules (av. Cu(1)-O, 1.981(3) Å). The third water molecule is at the axial vertex of the TP at a considerably larger distance (Cu(1)-O, 2.139(3) Å). The anion is of the host-guest type. The host is the deprotonated podand (H2L3)2?, and the guest is the water molecule. The latter is bound to the terminal hydroxyl groups of two phosphoryl groups of the podand by two acceptor hydrogen bonds and to two central ether oxygen atoms of the (H2L3)2? anion by one donor bifurcated hydrogen bond. The cations and anions in the structure are linked by hydrogen bonds to form chains parallel to the c axis.  相似文献   

7.
The crystals of [Cu2(Edta)(Py)2(H2O)2] · 2H2O (I) and [Cu(Im)6]{;Cu(Im)4[Cu(Edta)(Im)]2} · 6H2O (II) were isolated as a result of the reaction of an aqueous solutions of Cu2(Edta) · 4H2O with pyridine or imidazole, respectively. The crystals were studied by X-ray diffraction. The crystals of I are monoclinic, a = 12.682 Å, b = 6.788 Å, c = 14.834 Å, β = 91.44°, Z = 2, space group P21/n. The crystals of II are triclinic, a = 9.118 Å, b = 14.889 Å, c = 15.130 Å, α = 72.59°, β = 72.94°, γ = 82.54°, Z = 1, space group P{ie241-1}. In the centrosymmetric binuclear complex molecule of I, an N atom and two O atoms of the Edta ligand are coordinated to each Cu atom (Cu-N, 2.046 Å; Cu-O, 1.941 and 1.954 Å). The N atom of the pyridine molecule (Cu-N, 1.993 Å) completes the base of an elongated tetragonal pyramid (4 + 1) with the O atom of the H2O molecule in the apex (Cu-O(w), 2.244 Å). The crystals of II are built of centrosymmetric complex cations [Cu(Im)6]2+ (Cu(1)-N, 2.469, 2.021, and 2.056 Å), centrosymmetric trinuclear complex anions {;Cu(Im)4[Cu(Edta)(Im)]2}2?, and crystal water molecules. In the anion, the central fragment [Cu(Im)4]2+ (Cu(2)-N, 1.985 and 2.023 Å) is bonded to two peripheral complexes [Cu(Edta)(Im)]2? through atoms O of the Edta ligand (Cu(2)-O, 2.615 Å). In the [Cu(Edta)(Im)]2? fragment of the complex anion, the Cu(3) atom is bonded to the Edta ligand through the two N atoms and three O atoms (Cu(3)-N, 1.970 and 2.071 Å; Cu(3)-O, 1.966, 1.969, and 2.238 Å) and with the imidazole molecule, through an N atom (Cu(3)-N, 2.397 Å). The coordination polyhedra of the three copper atoms (Cu(1)-Cu(3)) in the structure of II are elongated tetragonal bipyramids (4 + 2). In the structures studied, Edta4? is a hexadentate chelating/bridging ligand. However, the coordination mode of the ligand in these structures is different: in the binuclear complex I, the Edta ligand is coordinated to each Cu atom through an N atom and two O atoms with the formation of two chelate rings (symmetric (trans) coordination mode), whereas, in the trinuclear complex II, the Edta ligand is coordinated to the Cu(2) atom through an O atom and to the Cu(3) atom through the two N atoms and three O atoms with the formation of three chelate rings (asymmetric (cis) coordination mode).  相似文献   

8.
The crystal structures of bis(2-thiobarbiturato-O)tetraaquamagnesium Mg(H2O)4(HTBA-O)2 I and catena-[(μ2-2-thiobarbiturato-O,O)(2-thiobarbiturato-O)bis(μ2-aqua)diaquastrontium] monohydrate catena-[Sr(μ2-H2O)2(H2O)22-HTBA-O,O)(HBTA-O)] n · nH2O (II), where H2TBA is 2-thiobarbituric acid C4H4N2O2S, have been determined. Crystal data for a=6.7598(2) Å, b = 7.6060(2) Å, c = 8.5797(2) Å, α = 79.822(2)°, β = 76.622(1)°, γ = 69.124(1)°, V = 398.82(2) Å3, space group P $\bar 1$ , Z = 1; for II: a = 20.8499(4) Å, b = 19.2649(5) Å, c = 4.14007(9) Å, β = 92.023(2)°, V = 1661.91(7) Å3, space group P21/n, Z = 4. The Mg2+ ion in I is bonded to six O atoms of two HTBA? ions and four water molecules that form a nearly regular octahedron. Each Sr2+ ion in II is coordinated to three oxygen atoms of three HTBA? ions and six water molecules that form an almost ideal tricapped trigonal prism. These polyhedra share edges to form infinite chains. Intermolecular hydrogen bonds create layered structures of I and II.  相似文献   

9.
The coordination polymers [Ag(C4H10N2)]CH3SO3 (I) and [Ag(C4H10N2)]PO2F2 (II) (C4H10N2 is piperazine (Ppz)) are synthesized, and their structures are determined. The crystals of I are monoclinic, space group P21/c, a = 6.280(1) Å, b = 11.781(1) Å, c = 12.112(1) Å, β = 97.21(1)°, V = 889.0(2) Å3, ρcalcd = 2.160 g/cm3, and Z = 4. The crystals of II are orthorhombic, space group Cmca, a = 13.039(1) Å, b = 10.450(1) Å, c = 12.837(1) Å, V = 1749.1(3) Å3, ρcalcd = 2.240 g/cm3, and Z = 8. Structure I contains cationic polymer chains [Ag(Ppz)] + . The silver atom bound to two nitrogen atoms of two Ppz ligands has an almost linear coordination mode (Ag-Naverage 2.197 Å, angle NAgN 161.2(1)°). The structure includes supramolecular layers due to weak interactions Ag…O(CH3SO3). Structure II is built of zigzag polymer chains [Ag(Ppz)]+ and tetrahedral cations PO2F 2 ? . The Ag+ ion has a linear coordination mode (Ag-N 2.220(3) Å, and the NAgN angle is 164.3(2)°). The tetrahedral anions PO2F 2 ? having weak contacts with the silver ions (Ag…O 2.630(3)Å) join the [Ag(Ppz)] + chains into wavy layers.  相似文献   

10.
Four new fluorochromatouranylates, namely, K[UO2(CrO4)F] · 1.5H2O (I), Rb[UO2(CrO4)F] · 1.5H2O (II), Rb[UO2(CrO4)F] · 0.5H2O (III), and Cs[UO2(CrO4)F] · 0.5H2O (IV), have been synthesized, and their crystallographic characteristics have been determined. All the compounds crystallize in monoclinic system, space group P21/c, with the unit cell parameters a = 13.1744(5) Å, b = 9.4598(3) Å, c = 13.0710(4) Å, β = 103.746(1)°, Z = 4, R = 0.0235 (I); a = 13.5902(7) Å, b = 9.5022(4) Å, c = 13.2271(6) Å, β = 102.914(2)°, Z = 4, R = 0.0247 (II); a = 24.7724(8) Å, b = 12.6671(4) Å, c = 9.4464(3) Å, β = 97.661(1)°, Z = 8, R = 0.0448 (III); a = 25.725(1) Å, b = 12.8261(5) Å, c = 9.4929(4) β = 97.208(1)°, Z = 8 (IV). The pairs of compounds I and II and compounds III and IV are isostructural. Crystals of compounds I–III have been subjected to complete X-ray diffraction study. It has been established that the structures of compounds I–III are built of [UO2(CrO4)F] n n? layers, which are parallel to the (100) plane and linked into a framework by alkali-metal cations located between layers, together with water molecules. The effect of topological and geometric isomerism on the structural features of 34 known uranyl compounds of the AT3M2 crystallochemical group, to which the studied compounds I–III also belong, is discussed.  相似文献   

11.
Reactions of AgReO4 and AgCH3SO3 with L = 2-amino-4-methylpyrimidine (Ampym, C5H7N3) in a ratio of 1: 2 in acetonitrile gave the complexes [AgL2(ReO4)] (I) and [AgL2(CH3SO3)] (II). Their structures were determined. The crystals of complex I are monoclinic, space group C2/c, a = 5.985(1), b = 3.465(1), c = 19.071(1) Å, β = 96.52(1)°, V = 1527.0(3) Å3, ρcalcd = 2.507 g/cm3, Z = 4. The crystals of complex II are orthorhombic, space group Pbca, a = 14.784(1), b = 11.991(1), c = 17.711(1) Å, V = 3139.7(4) Å3, ρcalcd= 1.782 g/cm3, Z = 8. Structure I shows discrete cationic complexes [AgL2]+. The silver atom is virtually linearly coordinated to two N atoms of crystallographically equivalent ligands L (Ag-N, 2.156(4) Å; the angle NAgN, 174.7(4)°). The complex cations are united into zigzag chains through the hydrogen bonds N-H...N. The resulting chains are linked by the hydrogen bonds N-H...O to uncoordinated perrhenate anions to form 2D supramolecular layers. In structure II, the Ag+ ion is coordinated by two crystallographically non-equivalent ligands L in a distorted linear fashion: Ag(1)-N(1), 2.166(7) Å;Ag(1)-N(4), 2.181(6) Å; the angle NAgN, 157.2(2)°. The anions CH3SO3 ? are weakly linked to the Ag+ ions (Ag...O 2.72 Å) and are hydrogen-bonded to the complex cations [AgL2]+, uniting them into supramolecular ribbons.  相似文献   

12.
Two new end-on azido-bridged dinuclear copper(II) complexes with the formula [Cu(μ1,1-N3)2(IEP)2] (I) and [Cu(μ1,1-N3)2(EMP)2] (II), where IEP and EMP are the deprotonated forms of 2-[1-(2-isopropylaminoethylimino)ethyl]phenol and 2-ethoxy-6-[(2-methylaminoeth-ylimino)methyl]phenol, respectively, were synthesized. Both complexes were characterized by elemental analyses and IR spectra. The crystal structures were determined by the X-ray diffraction. The crystal of I is monoclinic: space group P21/c, a = 9.662(2), b = 15.282(3), c = 10.639(2) Å, β = 115.418(10)°, V = 1418.9(5) Å3, Z = 2. The crystal of II is monoclinic: space group P21/n, a = 12.588(2), b = 7.705(1), c = 14.481(2), β = 91.736(5)°, V = 1403.9(2) Å3, Z = 2. The two Cu atoms in each complex are bridged by two end-on azide groups. Each Cu atom is in a square pyramidal coordination. The Cu…Cu distances are 3.230(2) Å in I and 3.150(2) Å in II.  相似文献   

13.
The title complexes, Na[ErIII(Cydta)(H2O)2] · 5H2O (I) and Na2[SmIII(Cydta)][SmIII(Cydta)(H2O)3] · 11H2O (II) (Cydta is trans-1,2-cyclohexanediaminetetraacetic acid), are prepared and characterized using IR, elemental analyses, and single-crystal X-ray diffraction techniques. Crystal I belongs to triclinic system (space group P1), which has a mononuclear eight-coordinate slightly distorted square antiprismatic conformation. The crystal data are as follows: a = 8.371(12) Å, b = 9.952(14) Å, c = 14.74(2) Å, α = 88.32(2)°, β = 76.30(2)°, γ = 87.87(2)°, V = 1192(3) Å3, Z = 1, ρ = 1.835 g/cm3, μ = 3.612 mm?1, F(000) = 658, R = 0.0194, and wR = 0.0520 for 4130 observed reflections with I≥2σ(I). Crystal II belongs to monoclinic system (space group P21/n), which has the binuclear nine-coordinate structure with tricapped trigonal prismatic conformation for Sm(1) and the pseudomonocapped square antiprismatic conformation for Sm(2). The crystal data are as follows: a = 12.283(6) Å, b = 15.626(7) Å, c = 25.875(12) Å, β = 97.962(7)°, V = 4919(4) Å3, Z = 4, ρ = 1.717 g/cm3, μ = 2.476 mm?1, F(000) = 2536, R = 0.0781, and wR = 0.1745 for 8554 observed reflections with I ≥ 2σ(I).  相似文献   

14.
Crystals of the copper bromide complexes with N-allylisoquinolinium halides of the composition [C9H7N(C3H5)]2CuIICl2.86Br1.14 (I), [C9H7N(C3H5)]CuIBr2 · H2O (II), and [C9H7N(C3H5)]CuIBr2 (III) are prepared by ac electrochemical synthesis, and their structures are studied by X-ray diffraction analysis (DARCh-1 (for I) and KUMA/CCD (for II and III) diffractometers). The crystals of compound I are monoclinic: space group P21/n, a = 15.053(5) Å, b = 10.486(4) Å, c = 17.179(10) Å, γ = 109.77(3)°, V = 2552(4) Å3, Z = 4. The crystals of complex II are triclinic: space group P $\overline 1 $ , a = 7.040(1) Å, b = 7.610(2) Å, c = 12.460(2) Å, α = 79.54(3)°, β = 86.73(3)°, γ = 89.51(1)°, V = 655.4(2) Å3, Z = 2. The crystals of complex III are monoclinic: space group P21/n, a = 12.799(1) Å, b = 7.692(1) Å, c = 13.491(1) Å, β = 111.08(1)°, V = 1239.3(2) Å3, Z = 4. The structure of compound I is built of the CuIIX 4 2? tetrahedra and N-allylisoquinolinium cations united by the C-H···X contacts into corrugated layers. The crystal structure of π-complex II is formed of dimers of the composition [C9H7(C3H5)]2 Cu 2 I Br4 forming layers in the direction of the z axis due to the C-H···X contacts. An important role in structure formation belongs to water molecules that cross-link the organometallic layers through the O-H···X contacts into a three-dimensional framework. When kept in the mother liquor for 6 months, the crystals of compound II transformed into crystals of compound III, whose structure consists of {[C9H7(C3H5)]2Cu 2 I Br4} n columns united through the C-H···Br contacts (H···Br 2.84(3)?2.92(4) Å) into a three-dimensional framework.  相似文献   

15.
Reactions of a solution of AgNO3 in aqueous methanol with solutions of 1,4-diallylpiperazine (acidified with HNO3 to pH = 4) and 1-allyloxybenzotriazole in ethanol gave the crystalline silver(I) π-complexes [Ag2(C4H8N2(C3H5)2(H+)2)(H2O)2(NO3)2](NO3)2 (I) and [Ag(C6H4N3(OC3H5)(NO3))] (II). Their crystal structures were determined by X-ray diffraction. Crystals of complexes I and II are monoclinic, space group P21/c; for I: a = 7.053(3)Å, b = 9.389(3)Å, c = 15.488(4)Å, β = 91.60°, V = 1025.3(6)Å3, Z = 4; for II: a = 10.650(4)Å, b = 15.062(5)Å, c = 7.412(4)Å, β = 104.20(3)°, V = 1152.6(8)Å3, Z = 4. In both structures, the organic components act as bidentate ligands forming with AgNO3 34- and 14-membered topological rings, respectively. In complex I, the nearly tetrahedral environment of the Ag(I) atom is made up of the olefinic C=C bond, the O atoms of the nitrate anions, and the water molecule. 1-Allyloxybenzotriazole in structure II causes the deformation of the coordination polyhedron of Ag into a trigonal pyramid via inclusion of the ligand N atom in its coordination sphere. The topological units of the complexes form infinite polymer layers linked by anionic NO 3 ? bridges. In structure I, these layers are united through a system of hydrogen bonds into a three-dimensional framework.  相似文献   

16.
The crystal structures of cesium 2-thiobarbiturate C4H3CsN2O2S (I) and rubidium 2-thiobarbiturate C4H3N2O2RbS (II) (C4H4N2O2S is 2-thiobarbituric acid, H2TBA) have been determined. Isostructural crystals are monoclinic; a = 7.9609(3) Å,b = 11.8474(3) Å, c = 7.7317(2) Å, β = 101.285(3)°, V = 715.13(4) Å3, space group C2/m, Z = 4 for I and a = 7.6369(2) Å, b = 11.7690(3) Å, c = 7.5568(2) Å, β = 100.212(1)°, V = 668.44(3) Å3, space group C2/m, Z = 4 for II. Each metal ion in complexes I and II is bonded to four oxygen atoms and two sulfur atoms at the vertices of a six-vertex polyhedron. N-H…O hydrogen bonds link HTBA-ions into chains. The structure is also stabilized by the “head-to-tail” π-π interaction of HTBA-ions.  相似文献   

17.
A synthetic procedure was developed, and heteropolynuclear coordination compounds—the products of the interaction of germanium tetrachloride with xylaric (trihydroxyglutaric) acid HOOC-CH(OH)-CH(OH)-CH(OH)-COOH (H5L) and the acetates of the 3d metals Mn(II) and Co(II)—were prepared. The compounds were characterized by elemental analysis, thermogravimetry, and IR spectroscopy. The X-ray diffraction analysis of the [M(H2O)6][Ge(μ3-L)2{M(H2O)2}2] · 4H2O · nCH3CN complexes, where M = Co, n = 0 (I) and M = Mn, n = 1 (II), was performed. The crystals of I are monoclinic, a = 10.752(2) Å, b = 11.830(2) Å, and c = 10.772(2) Å, β = 94.741(3)°, V = 1365.4(5) Å3, Z = 2, space group P21/n, R1 = 0.0309 for 3200 reflections with I > 2σ(I). The crystals of II are triclinic, a = 9.5330(17) Å, b = 9.7415(17) Å, and c = 10.3935(18) Å, α = 115.024(2)°, β = 97.580(3)°, γ = 111.535(3)°, V = 764.9(2)Å3, Z = 1, space group $P\bar 1$ , R1 = 0.0621 for 3028 reflections with I > 2σ(I). The bimetallic anions [Ge(μ3-L)2{M(H2O)2}2]2?, the cations [M(H2O)6]2+, and crystal water molecules form the basis of compounds I and II (the acetonitrile molecule is also a constituent of compound II). In the centrally symmetrical trinuclear complex anion, the Ge(1) atom is bound to two M(1) atoms through two completely deprotonated bridging ligands. The Ge(1) atom is coordinated to the six alcohol oxygen atoms of two ligands L5? at the apexes of a distorted octahedron (the average Ge(1)-O distances in I and II are 1.8858(14) and 1.892(3)Å, respectively). The coordination polyhedron of the M(1) atom in the complex anion is a strongly distorted octahedron. The base of the coordination polyhedron is formed by the two bridging alcohol oxygen atoms (the average M(1)-O distances in I and II are 2.1756(14) and 2.255(3) Å, respectively) of two L5? ligands and by the oxygen atoms of two water molecules (the average M(1)-O distances in I and II are 2.0693(17) and 2.175(4) Å, respectively). In the centrally symmetrical complex cation, the coordination polyhedron of the M(2) atom is a somewhat distorted octahedron. The M(2)-O(H2O) bond lengths in I and II vary in the ranges of 2.0137(17)-2.1555(17) and 2.140(5)-2.172(4) Å, respectively (the average lengths are 2.0375(17) and 2.166(4) Å, respectively). The cations and anions are joined by a branched system of hydrogen bonds.  相似文献   

18.
A pair of structurally similar dinuclear oxovanadium(V) complexes, [VO2L1]2 (I) and [VO2L2]2 (II), where L1 and L2 are the mono-anionic form of 2-[(2-isopropylaminoethylimino)methyl]-4-methylphenol (HL1) and 4-fluoro-2-[(2-isopropylaminoethylimino)methyl]phenol (HL2), respectively, have been synthesized and characterized by elemental analysis, FT-IR spectra, and single crystal X-ray determination. The crystal of I is monoclinic: space group P21/c, a = 12.528(1), b = 12.266(1), c = 9.432(1) Å, β = 104.814(3)°, V = 1401.2(3) Å3, Z = 2. The crystal of I is monoclinic: space group P21/n, a = 12.3128(5), b = 6.5124(3), c = 17.1272(7) Å, β = 105.863(1)°, V = 1321.1(1) Å3, Z = 2. The V…V distances are 3.210(1) Å in I and 3.219(1) Å in II. The V atoms in the complexes are in octahedral coordination. Biological assay indicates that complex II, bearing fluoro-substitute groups, has stronger antimicrobial activity against most bacteria than complex I which bearing methyl-substitute groups.  相似文献   

19.
Heteroligand binuclear complexes of CuCl with triphenylphosphine and 5-pyridine-2-yl-5,6-dihydro-[1,3]dithiolo[4,5-b][1,4]dithiine-2-thione (L1) of the compositions [CuCl(PPh3)(L1)]2 (I) and [CuCiL1]2 (II) are synthesized and studied by X-ray diffraction method. Crystals I are monoclinic; space group P21/n, a=8.9520(18) Å, b=18.926(4) Å, c=16.841(3) Å, β=94.96(3)°, Z=2. The Cu(I) atom has a quasi-tetrahedral surrounding involving the tetraphenylphosphine P atom, the pyridyl N atom of the molecule L1, and two bridging Cl atoms. Crystals II are monoclinic; space group P21/c, a=9.3520(19) Å, b=8.1490(16) Å, c=18.660(4) A, β = 104.43(3)°, Z = 2. Both L1 ligands in complex II act as bridges. The Cu(I) atom also has a quasi-tetrahedral surrounding formed by the Cl atoms, the pyridyl N atoms and thiol S atom of one L1 ligand, and the thione S atom of the second L1 ligand. Similar binuclear complexes with the bridging function of the L1 ligand were also detected in a solution of II by the ESI method.  相似文献   

20.
The coordination compounds [CoL2Cl2] (I) and [CdL2(H2O)2(NO3)2] (II) have been synthesized by the reaction of CoCl2 · 6H2O and Cd(NO3)2 · 4H2O with L = 2-amino-4-methylpyrimidine (Ampym, C5H7N3), and their structures have been solved. The crystals of complex I are triclinic, space group $P\bar 1$ , a = 5.627(1) Å, b = 11.191(1) Å, c = 12.445(1) Å, α = 81.00(1)°, β = 77.21(1)°, γ = 76.18(1)°, V = 737.7(2) Å3, ρcalcd = 1.567 g/cm3, Z = 2. The crystals of complex II are monoclinic, space group P21/c, a = 10.390(1) Å, b = 11.982(1) Å, c = 7.624(1) Å, β = 102.61(1)°, V = 926.1(2) Å3, ρcalcd = 1.760 g/cm3, Z = 2. Discrete [CoL2Cl2] moieties are realized in the structure of complex I. The cobalt atom is tetrahedrally coordinated to the two nitrogen atoms of crystallographically nonequivalent ligands L and two chlorine atoms (Co(1)-Navg, 2.051(4)Å; Co(1)-Cl(1), 2.241(1) Å; Co(1)-Cl(2), 2.263 Å; bond angles at the cobalt atom lie within a range of 102.1°–118.6°). The complexes are linked into supramolecular zigzag chains by N-H...N(Cl) hydrogen bonds. In the structure of complex II, the Cd2+ ion (at the inversion center) is coordinated in pairs to the nitrogen atoms of ligand L and the O(NO3) and O(H2O) oxygen atoms. The coordination of the Cd2+ ion is distorted octahedral (Cd(1)-N(1), 2.341Å; Cd(1)-O(1), 2.340(4) Å; Cd(1)-O(4), 2.327(3) Å; bond angles at the cadmium atom lie within a range of 79.1°–100.9°). N-H...N hydrogen bonds link the complexes into supramolecular chains. These chains are linked into a supramolecular framework by the O-H...O hydrogen bonds between water molecules and NO3 groups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号