共查询到20条相似文献,搜索用时 0 毫秒
1.
Using molecular-dynamics simulations, we study the crystallization of supercooled liquids of charge-stabilized colloidal suspensions, modeled by the Yukawa (screened-Coulomb) potential. By modifying the value of the screening parameter lambda, we are able to invert the stability of the body-centered cubic (bcc) and face-centered cubic (fcc) polymorphs and study the crystal nucleation and growth in the domain of stability of each polymorph. We show that the crystallization mechanism strongly depends on the value of lambda. When bcc is the stable polymorph (lambda=3), the crystallization mechanism is straightforward. Both kinetics and thermodynamics favor the formation of the bcc particles and polymorph selection takes place early during the nucleation step. When fcc is the stable polymorph (lambda=10), the molecular mechanism is much more complex. First, kinetics favor the formation of bcc particles during the nucleation step. The growth of the post-critical nucleus proceeds through the successive cross-nucleation of the stable fcc polymorph on the metastable hcp polymorph as well as of the hcp polymorph on the fcc polymorph. As a result, polymorph selection occurs much later, i.e., during the growth step, than for lambda=3. We then extend our findings established in the case of homogeneous crystal nucleation to a situation of practical interest, i.e., when a seed of the stable polymorph is used. We demonstrate that the growth from the (111) face of a perfect fcc crystal into the melt proceeds through the same mechanisms. 相似文献
2.
We perform Monte Carlo simulations on the hard-core attractive Yukawa system to test the optimized Baxter model that was introduced by Prinsen and Odijk [J. Chem. Phys. 121, 6525 (2004)] to study a fluid phase of spherical particles interacting through a short-range pair potential. We compare the chemical potentials and pressures from the simulations with analytical predictions from the optimized Baxter model. We show that the model is accurate to within 10% over a range of volume fractions from 0.1 to 0.4, interaction strengths up to three times the thermal energy, and interaction ranges from 6% to 20% of the particle diameter, and performs even better in most cases. We furthermore establish the consistency of the model by showing that the thermodynamic properties of the Yukawa fluid computed via simulations may be understood on the basis of one similarity variable, the stickiness parameter defined within the optimized Baxter model. Finally, we show that the optimized Baxter model works significantly better than an often used, naive method determining the stickiness parameter by equating the respective second virial coefficients based on the attractive Yukawa and Baxter potentials. 相似文献
3.
We assess the accuracy of the self-consistent Ornstein-Zernike approximation for a binary symmetric hard-core Yukawa mixture by comparison with Monte Carlo simulations of the phase diagrams obtained for different choices of the ratio alpha of the unlike-to-like interactions. In particular, from the results obtained at alpha=0.75 we find evidence for a critical endpoint in contrast to recent studies based on integral equation and hierarchical reference theories. The variation of the phase diagrams with range of the Yukawa potential is investigated. 相似文献
4.
Using hybrid Monte Carlo molecular simulations, we study crystallization from the melt of softly repulsive spheres interacting through an inverse power law potential. We work at fixed supercooling (i.e., at a temperature 25% below the melting temperature) and consider three systems, defined by different values for the inverse power exponent n: n = 5, n = 6.67, and n = 10. Modifying the value of n allows us to study the onset of crystallization in the domain of stability of the body-centered cubic (bcc) phase (n = 5 and n = 6.67) and in the domain of stability of the face-centered cubic (fcc) phase (n = 10). We show that, for the three systems, polymorph selection does not take place during crystal nucleation since the structure of the critical nuclei obtained for the three systems is not well defined. However, our results demonstrate that polymorph selection takes place during the growth step since growth proceeds either into the stable bcc phase for the two smaller values of n (n = 5 and n = 6.67) or into the stable fcc phase for the larger value of n (n = 10). We also show that we did not achieve complete control of polymorphism for n = 10. The growth step gives rise to either slowly growing crystallites composed of two blocks of different structures (the stable fcc form and the metastable bcc form) or rapidly growing crystallites of the metastable bcc form. 相似文献
5.
6.
The thermodynamic perturbation theories, which are based on the power series of a coupling constant (λ-expansion), have been proposed for studying the structural and thermodynamic properties of a hard-core Yukawa (HCY) fluid: one (A1-approximation) is the perturbation theory based on the hard-sphere repulsion as a reference system. The other (A2-approximation) is the perturbation theory based on the reference system which incorporates both the repulsive and short-range attractive interactions. The first-order mean-spherical approximation (FMSA) provided by Tang and Lu [J. Chem. Phys. 99, 9828 (1993)] has been employed for investigating the thermodynamic properties of a HCY fluid using the alternative method via the direct correlation function. The calculated results show that (i) the A1 and A2 approximations are in excellent agreements with previous computer simulation results in the literature and compare with the semi-empirical works of Shukla including the higher-order free energy terms, (ii) the A1 and A2 approximations are better than the FMSA and the mean-spherical approximation, (iii) the A2-approximation compares with the A1-approximation, even though the perturbation effect of an A2-approximation is much smaller than that of an A1-approximation, and that (iv) the FMSA study is particularly of advantage in providing the structure and thermodynamics in a simple and analytic manner. 相似文献
7.
We analytically calculate the gas-liquid critical endpoint (cep) for hard spheres with a Yukawa attraction. This cep is a boundary condition for the existence of a liquid. We use an analytical Helmholtz energy expression for the attractive Yukawa (hard) spheres based on the first-order mean spherical approximation to the attractive Yukawa potential by Tang and Lu (J. Chem. Phys. 1993, 99, 9828). This theory and our analytical simplification of it predict the gas-liquid and fluid-solid phase behavior, as found from computer simulations, very accurately as long as the range 1/kappa of attraction is not too short. We find that the cep is situated at kappasigma approximately 6 and at a contact potential around 2 kT. It follows that a liquid state is only possible when the attraction range is longer than (1/6) of the particle diameter sigma, and the attraction strength is smaller than 2 kT. The liquid region does not span more than 0.6 kT in strength, and there is also a relatively narrow window for the attraction range. 相似文献
8.
9.
10.
11.
The liquid-vapor phase diagram and surface tension for hard-core Yukawa potential with 4相似文献
12.
The sedimentation equilibrium of colloidal suspensions modeled by hard-core attractive Yukawa (HCAY) fluids in a planar pore is studied. The density profile of the HCAY fluid in a gravitational field and its distribution between the pore and uniform phases are investigated by a density functional theory (DFT) approach, which results from employing a recently proposed parameter-free version of the Lagrangian theorem-based density functional approximation (Zhou, S. Phys. Lett. A 2003, 319, 279) for hard-sphere fluids to the hard-core part of the HCAY fluid, and the second-order functional perturbation expansion approximation to the tail part as was done in a recent partitioned density functional approximation (Zhou, S. Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top. 2003, 68, 061201). The resultant DFT approach is, thus, the first adjustable parameter-free DFT for HCAY fluids. The validity of the present DFT for HCAY fluids of reduced range parameter z(red) = 1.8 under various external potentials is established in the first of the papers cited previously. The present DFT for HCAY fluids can predict the radial distribution function for the bulk HCAY fluid accurately in the colloidal limit (large value of z(red)), and in the hard-sphere limit, its prediction for the density profile of the hard-sphere fluid in a gravitational field is in very good agreement with the existing simulation data. The dependence of the density profile and distribution coefficient on the magnitude of the interparticle attraction, gravitational field, and degree of confinement is investigated in detail by the present DFT approach. Intuitive and qualitative analyses are also compared with the quantitative DFT calculational results. 相似文献
13.
The grand canonical ensemble Monte Carlo simulation and density-functional theory are applied to calculate the structures, local mole fractions, and adsorption isotherms of binary hard-core Yukawa mixtures in a slitlike pore as well as the radial distribution functions of bulk mixtures. The excess Helmholtz energy functional is a combination of the modified fundamental measure theory of Yu and Wu [J. Chem. Phys. 117, 10156 (2002)] for the hard-core contribution and a corrected mean-field theory for the attractive contribution. A comparison of the theoretical results with the results from the Monte Carlo simulations shows that the corrected theory improves the density profiles of binary hard-core Yukawa mixtures in the vicinity of contact over the original mean-field theory. Both the present corrected theory and the simulations suggest that depletion and desorption occur at low temperature, and the local segregation can be observed in most cases. For binary mixtures in the hard slitlike pore, the present corrected theory predicts more accurate surface excesses than the original one does, while in the case of the attractive pore, no improvement is found in the prediction of a surface excess of the smaller molecule. 相似文献
14.
The Weeks-Chandler-Anderson (WCA) perturbation theory is studied utilising recent results for the Yukawa model fluid. Replacing the attractive tail of the Lennard-Jones potential with a Yukawa tail, where the Yukawa parameters are chosen using a least squares fit, it is shown that accurates field dstribution functions can be generated via the EXP approximation of the WCA optimized cluster theory. The comparative case and accuracy with which the correlation functions for the Yukawa fluid can be compared render this a very useful method for studying the equilibrium properties of simple liquids. 相似文献
15.
The thermodynamic and structural properties of purely repulsive hard-core Yukawa particles in the fluid state are determined through Monte Carlo simulation and modeled using perturbation theory and integral equation theory in the mean spherical approximation (MSA). Systems of particles with Yukawa screening lengths of 1.8, 3.0, and 5.0 are examined with results compared to variations of MSA and perturbation theory. Thermodynamic properties were predicted well by both theories in the fluid region up to the fluid-solid phase boundary. Further, we found that a simplified exponential version of the MSA is the most accurate at predicting radial distribution function at contact. Radial distribution function of repulsive hard-core Yukawa particles are also reported. The results show that methods based on MSA and perturbation theory that are typically applied to the attractive hard-core Yukawa potential can also be extended to the purely repulsive hard-core Yukawa potential. 相似文献
16.
V. D. Aleksandrov O. A. Pokyntelytsia N. V. Shchebetovskaya 《Russian Journal of Physical Chemistry A, Focus on Chemistry》2014,88(8):1307-1311
Precrystallization supercooling states ΔT L ? in the naphthalene-dibenzyl system are investigated via thermal analysis to determine the metastable area of the supercooling state under normal conditions of crystallization. Autonomous supercooling is observed and the enthalpy of crystallization relative to the liquidus and solidus temperature is found. It is established that ΔT L ? falls smoothly as the concentration of the second component rises and reaches its lowest point with an eutectic alloy. The data on supercooling states and enthalpy are used to calculate different parameters of alloy crystallization in the system under study. 相似文献
17.
18.
N. V. Somov F. F. Chausov N. V. Lomova 《Russian Journal of Inorganic Chemistry》2018,63(11):1443-1445
A new CsNO3 polymorph with space group P21/c, Z = 4, a = 4.5699(9) Å, b = 11.1871(10) Å, c = 9.1484(18) Å, β = 131.24(3)° has been prepared by crystallization from a mixture of water and DMSO. Flat triangles NO3 are located in the (010) and (020) planes between the layers formed by coordination polyhedra of Cs atoms in the (040) plane. In contrast to the previously known low-temperature polymorph, the new modification is characterized by the crystal equivalence of all Cs and NO3 groups. 相似文献
19.
We investigate bulk and interfacial properties of a recently proposed hard-body model for a ternary mixture of amphiphilic particles, spheres and needles using density functional theory. The simple model amphiphiles are formed by bonding a vanishingly thin needle tail radially to a hard-sphere head group. Such particles provide a natural amphiphile when added to a binary mixture of spheres and needles. As all interactions are hard, we seek to find whether amphiphilic effects can be driven by entropy without the need to invoke attractive interactions. In order to assess the amphiphilic character of the model we first examine the spatial and orientational distribution of the amphiphiles at the free interface between demixed needle-rich and amphiphile-rich fluid phases of the binary amphiphile-needle subsystem. We then consider the free interface between sphere-rich and needle-rich phases upon adding amphiphiles with low concentration to the demixed system. In both cases the orientational distribution of the particles in the interface provides strong evidence that amphiphilic properties can arise purely from geometrical packing effects. 相似文献