首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The adsorption of Cr(VI) and Ni(II) using ethylenediaminetetraacetic acid‐modified diatomite waste (EDTA‐DW) as an adsorbent in single and binary systems was investigated. The EDTA‐DW was characterized using various analytical techniques, including Fourier transform infrared spectroscopy, thermogravimetric analysis, Brunauer–Emmett–Teller measurements, X‐ray diffraction, scanning electron microscopy and energy‐dispersive spectrometry. The adsorption experiment was conducted by varying pH, adsorbent dosage, initial concentration and temperature. In the single system, the sorption data for Cr(VI) fitted the Langmuir isotherm, but the Ni(II) adsorption data fitted well the Freundlich isotherm. The maximum sorption capacity of Cr(VI) and Ni(II) was 2.9 mg g?1 at pH = 3 and 3.64 mg g?1 at pH = 8, respectively. The kinetic data for both Cr(VI) and Ni(II) followed well the pseudo‐second‐order kinetic model in single and binary systems. Meanwhile, the extended Langmuir and extended Freundlich multicomponent isotherm models were found to fit the competitive adsorption data for Cr(VI) and Ni(II). In addition, in the binary system, the existence of Ni(II) hindered the adsorption of Cr(VI), but the presence of Cr(VI) enhanced the removal of Ni(II). This study provides some realistic and valid data about the usage of modified diatomite waste for the removal of metal ions.  相似文献   

3.
Adsorption of chromium from aqueous solution using chitosan beads   总被引:1,自引:0,他引:1  
A basic investigation on the removal of Cr(III) and Cr(VI) ions from aqueous solution by chitosan beads was conducted in a batch adsorption system. The chitosan beads were prepared by casting an acidic chitosan solution into an alkaline solution. The influence of different experimental parameters; pH, agitation period and different concentration of Cr(III) and Cr(VI) ions was evaluated. A pH 5.0 was found to be an optimum pH for Cr(III) adsorption, and meanwhile pH 3.0 was the optimum pH for the adsorption of Cr(VI) onto chitosan beads. The Langmuir and Freundlich adsorption isotherm models were applied to describe the isotherms and isotherm constants for the adsorption of Cr(III) and Cr(VI) onto chitosan beads. Results indicated that Cr(III) and Cr(VI) uptake could be described by the Langmuir adsorption model. The maximum adsorption capacities of Cr(III) and Cr(VI) ions onto chitosan beads were 30.03 and 76.92 mg g−1, respectively. Results showed that chitosan beads are favourable adsorbents. The Cr(III) and Cr(VI) ions can be removed from the chitosan beads by treatment with an aqueous EDTA solution.  相似文献   

4.
Summary Synthetic Sorel's cement [3Mg(OH)2 . MgCl2 . 8H2O], is used as a new adsorbent material for removal of chromium(VI) ion from wastewater effluents. Parameters including contact time, adsorbent dosage and pH are examined and optimized. The equilibrium data are fitted very well to the Langmuir and Freundlich isotherms rather than linear. The adsorption isotherm indicates that the monolayer coverage is 21.4 mg Cr(VI) ion per g of Sorel's cement. The adsorbent is considered as a better replacement technology for removal of Cr(VI) ion from aqueous solutions due to its low cost, good efficiency, fast kinetics, and simple preparation. It offers remarkable efficiency for Cr(VI) removal from wastewater compared with many other natural and synthetic adsorbents.  相似文献   

5.
Adsorption of Cr(VI) using activated neem leaves: kinetic studies   总被引:1,自引:0,他引:1  
In the present study, adsorbent is prepared from neem leaves and used for Cr(VI) removal from aqueous solutions. Neem leaves are activated by giving heat treatment and with the use of concentrated hydrochloric acid (36.5 wt%). The activated neem leaves are further treated with 100 mmol of copper solution. Batch adsorption studies demonstrate that the adsorbent prepared from neem leaves has a significant capacity for adsorption of Cr(VI) from aqueous solution. The parameters investigated in this study include pH, contact time, initial Cr(VI) concentration and adsorbent dosage. The adsorption of Cr(VI) is found to be maximum (99%) at low values of pH in the range of 1-3. A small amount of the neem leaves adsorbent (10 g/l) could remove as much as 99% of Cr(VI) from a solution of initial concentration 50 mg/l. The adsorption process of Cr(VI) is tested with Langmuir isotherm model. Application of the Langmuir isotherm to the system yielded maximum adsorption capacity of 62.97 mg/g. The dimensionless equilibrium parameter, R L, signifies a favorable adsorption of Cr(VI) on neem leaves adsorbent and is found to be between 0.0155 and 0.888 (0<R L<1). The adsorption process follows second order kinetics and the corresponding rate constant is found to be 0.00137 g/(mg) (min).  相似文献   

6.
The removal of Cr (VI) from aqueous solutions using Alligator weed, a freshwater macrophyte, was investigated in batch studies. Various factors including solution pH, Cr (VI) concentrations, agitation time, and temperature were taken into account and promising results obtained. An initial solution pH of 1.0 was most favorable for Cr (VI) removal. The kinetic data were analyzed using several models, including the pseudo-second-order equation, external diffusion model, and intraparticle diffusion model. The comparison gave insight about the mechanism of adsorption and potential rate controlling step. The results suggested that the Cr (VI) adsorption at all temperatures was best represented by the pseudo-second-order equation. The external film diffusion played an important role in the adsorption mechanism. The Freundlich, Langmuir and Langmuir-Freundlich isotherms for the present system were analyzed. The best interpretation for the equilibrium data at different temperatures was given by the Langmuir-Freundlich isotherm. The Alligator weed could serve as low-cost adsorbent to remove Cr (VI) from aqueous solutions.  相似文献   

7.
Calcium ferrite nanoparticles with super-paramagnetic behavior were synthesized via simple chemical precipitation method for effective removal of hexavalent chromium from aqueous media. The properties of synthesized nanoparticles were studied by X-ray diffraction (XRD), field emission scanning electron microscope (FESEM), Fourier transform infrared (FTIR) spectroscopy, Brunauer-Emmett-Teller (BET), and vibrating sample magnetometer (VSM) measurements. The ferrite nanoparticles have shown polycrystalline nature and high BET specific surface area (229.83 m2/g) with active functional groups on the surface. The adsorption process follows second-order kinetics with the involvement of intra-particle diffusion and adsorption capacity as much as 124.11 mg/g was determined from the Langmuir isotherm. The thermodynamic analysis revealed that the adsorption process was feasible, spontaneous, and exothermic in nature. A three-layer feed-forward back-propagation artificial neural network (ANN) model was employed to predict the removal (%) of Cr(VI) ions as output. Optimal ANN network (4:8:1) shows the minimum mean squared error (MSE) of 0.00161 and maximum coefficient of determination (R2) of 0.984. The adsorption process is mostly influenced by solution pH and followed by adsorbent dosage, initial Cr(VI) concentration, and contact time as illustrated by sensitivity analysis. With small size and high surface area, biocompatibility, ecofriendly nature, easy magnetic separation, and enhanced adsorption capacity towards Cr(VI), calcium ferrite nanoparticles will find its potential application in wastewater remediation.  相似文献   

8.
Cellulose microsphere (CMS) adsorbent was prepared by radiation-induced grafting of dimethylaminoethyl methacrylate (DMAEMA) onto CMS followed by a protonation process. The FTIR spectra analysis proved that PDMAEMA was grafted successfully onto CMS. The adsorption of Cr(VI) onto the resulting adsorbent was very fast, the equilibrium adsorption could be achieved within 15 min. The adsorption capacity strongly depended on the pH of the solution, which was attributed to the change of both the existed forms of Cr(VI) and the tertiary-ammonium group of PDMAEMA grafted CMS with the pH. A maximum Cr(VI) uptake (ca. 78 mg g?1) was obtained as the pH was in the range of 3.0–6.0. However, even in strong acid media (pH 1.3), the adsorbents still showed a Cr(VI) uptake of 30 mg g?1. The adsorption behavior of the resultant absorbent could be described with the Langmuir mode. This adsorbent has potential application for removing heavy metal ion pollutants (e.g. Cr(VI)) from wastewater.  相似文献   

9.
Biochar (BC) has been widely used as a low-cost adsorbent for the removal of contaminants from water and soil. However, the adsorption ability of BC towards heavy metal oxyanions (e.g., Cr(VI)) is relatively low due to the negatively charged surface of BC. In this study, pristine BC was impregnated with Fe3+ to improve its Cr(VI) adsorption capability. Fe3+-impregnated BC (Fe3+-BC) was successfully synthesized by a simple impregnation method and used for the removal of Cr(VI) from aqueous solution. Various factors affecting the adsorption, such as impregnation ratio, pH, adsorbent dosage, contact time, temperature, and the presence of humic acid, were investigated in detail. Results showed that Fe3+-BC had strong adsorption ability to Cr(VI) with a maximum adsorption capacity of 197.80 mg/g, which were not only significantly higher than that of the pristine BC, but also were superior to many previously reported adsorbents. It was favorable for Cr(VI) adsorption under the condition of acidic and high temperature. The adsorption data obeyed Sips and Langmuir isotherms and the kinetic data were well described by the pseudo-first-order kinetic model. The results herein revealed that the Fe3+-impregnated BC had a good potential as a highly efficient material for adsorption of Cr(VI) from aqueous solution.  相似文献   

10.
The adsorption of uranium (VI) using tetraphenylimidodiphosphinate (Htpip) was studied. Factors of affecting sorption efficiency have been investigated and results showed the adsorption of uranium (VI) was equilibrium at pH 4.5, time 20 min, adsorbent dosage 0.005 g and initial concentration 50 mg L?1 reaching 99.86 mg g?1 of adsorption capacity and 99.86% of removal efficiency. Additionally, the interfering ions studies showed that the adsorbent possessed excellent adsorption selectivity of uranium (VI). The surface morphology of Htpip was investigated by SEM. The adsorption process of uranium (VI) onto Htpip fit the pseudo-second-order kinetic model and the Freundlich isotherm model very well.  相似文献   

11.
采用分散聚合法通过共聚、开环反应, 对纳米Fe3O4进行表面功能化修饰, 得到富含NH2官能团的纳米磁性高分子复合材料. 通过透射电镜(TEM)、振动样品磁强计(VSM)、热重差热分析(TGA)、X射线衍射(XRD)、红外光谱(IR)等对其进行表征, 着重研究了其作为吸附剂对Cr(VI)的吸附性能. 结果表明: 该吸附剂对Cr(VI)的吸附能在10 min内达到平衡; 废水溶液pH值能显著影响吸附剂对Cr(VI)的吸附效果, pH为2.5时效果最佳. 废水中Cr(VI)的初始浓度、吸附时间、温度等因素对吸附效果均有不同程度的影响. 结合相应pH值下Cr(VI)的形态分布, 探讨了这种新型材料对Cr(VI)的吸附机理. 结果表明: 其吸附机理及吸附容量与废水中Cr(VI)的离子形式有关; 吸附过程以离子交换与静电引力为主. 等温吸附数据符合Langmuir模型, T=308 K, pH=2.5, V=40 mL时, 吸附剂的饱和吸附容量qm=25.58 mg/g. 吸附为吸热过程, 焓变ΔH=8.64 kJ/mol.  相似文献   

12.
A new sorbent material for removing Cr(VI) anionic species from aqueous solutions has been investigated. Adsorption equilibrium and thermodynamics of Cr(VI) anionic species onto reed biomass were studied at different initial concentrations, sorbent concentrations, pH levels, temperatures, and ionic strength. Equilibrium isotherm was analyzed by Langmuir model. The experimental sorption data fit the model very well. The maximum sorption capacity of Cr(VI) onto reed biomass was found to be 33 mg · g?1. It was noted that the Cr(VI) adsorption by reed biomass decreased with increase in pH. An increase in temperature resulted in a higher Cr(VI) loading per unit weight of the adsorbent. Removal of Cr(VI) by reed biomass seems to be mainly by chemisorption. The change in entropy (ΔS°) and heat of adsorption (ΔH°) for Cr(VI) adsorption on reed biomass were estimated as 2205 kJ · kg?1 · K?1 and 822 kJ · kg?1, respectively. The values of isosteric heat of adsorption varied with the surface loading of Cr(VI).  相似文献   

13.
Magnetic biochar, as an adsorbent, was synthesized by a single step method, where iron salt was directly mixed with pinewood sawdust by chemical co-precipitation and subsequently pyrolyzed at 700°C for Cr (VI) removal from aqueous solution. The effects of some important parameters including adsorbent dosage (0.4–2.8?g/L), pH (1–10) of the solution, contact time (0–1440 minutes), initial concentration (30–120?mg/L), and temperature (20–40°C) were investigated in batch experiments. Both pre- and post-adsorbents were characterized by SEM-EDX and XPS to investigate the adsorption mechanism. The maximum adsorption capacity of the tested magnetic biochar under the certain experimental conditions determined as optimal was 42.7?mg/g for Cr (VI). The adsorption data were proved to be suitable for the pseudo-second order model for kinetics and the Langmuir model for isotherms with correlation R2?=?0.9996 andR2?>?0.9980, respectively, after fitting with four kinetic models (pseudo-first order, pseudo-second order, W-M model, and Elovich) and three isotherm models (Langmuir, Freundlich, and Temkin). The characteristic analyses further verified that the efficient particle was a mixture of iron oxides in essence, and it had a strong effect on the spontaneous and endothermic adsorption process.  相似文献   

14.
A new biosorbent has been prepared by coating Chrysophyllum albidum (Sapotaceae) seed shells with chitosan and/or oxidizing agents such as sulfuric acid. This study investigated the technical feasibility of activated and modified activated C. albidum seed shells carbons for the adsorption of chromium(VI) from aqueous solution. The sorption process with respect to its equilibria and kinetics as well as the effects of pH, contact time, adsorbent mass, adsorbate concentration and particle size on adsorption was also studied. The most effective pH range was found to be between 4.5 and 5 for the sorption of the metal ion. The pseudo-first-order rate equation by Lagergren and pseudo-second-order rate equation were tested on the kinetic data, the adsorption process followed pseudo-second-order rate kinetics, also, isotherm data was analyzed for possible agreement with the Langmuir and Freundlich adsorption isotherms, the Freundlich and Langmuir models for dynamics of metal ion uptake proposed in this work fitted the experimental data reasonably well. However, equilibrium sorption data were better represented by Langmuir model than Freundlich. The adsorption capacity calculated from Langmuir isotherm was 84.31, 76.23 and 59.63 mg Cr(VI)/g at initial pH of 3.0 at 30 °C for the particle size of 1.00–1.25 mm with the use of 12.5, 16.5 and 2.1 g/L of CACASC, CCASC and ACASC adsorbent mass, respectively. This readily available adsorbent is efficient in the uptake of Cr(VI) ion in aqueous solution, thus, it could be an excellent alternative for the removal of heavy metals and organic matter from water and wastewater.  相似文献   

15.

In order to separate and pre-concentrate uranium from aqueous phase, a novel silica-based adsorbent was prepared by impregnating nalidixic acid (HNA) into a macroreticular silica/polymer composite support (SiO2-P) with a mean diameter of 60 μm. Adsorption behavior of uranium from aqueous solution onto the adsorbent was studied. Experimental results indicated that HNA/SiO2-P showed strong adsorption for uranium in a wide range of pH from 3.5 to 10.0, and the maximum adsorption capacity was 35.4 mg g−1. In addition, HNA/SiO2-P exhibited good selectivity for U(VI) and showed weak or bare adsorption affinity to foreign ions. Kinetic and isotherm of uranium adsorption were in accordance with the pseudo-second-order kinetic model and Langmuir isotherm adsorption model, respectively. Moreover, U(VI) sorption was found to be an endothermic reaction and spontaneous under experimental state. The synthesized adsorbent showed an admirable stability at lower pH values in aqueous solution.

  相似文献   

16.
Experiments on the removal and recovery of U(VI) from aqueous solution by tea waste were conducted. The adsorbent was characterized by scanning electron microscope and energy dispersive spectrometer before and after the adsorption treatment. The removal of U(VI) amounts to 86.80?% at optimum pH 6. The adsorption process reaches its equilibrium in 12?h at 308?K, and the kinetic characteristic can be described by the pseudo-second-order kinetic equation. The amount of adsorption increases from 22.92 to 142.21?mg?g?1 with the decrease of tea waste dosage from 100 to 10?mg for solution with an initial uranium concentration of 50?mg?L?1. Desorption for the four strippants is higher than 80?%. The equilibrium data are more agreeable with Freundlich isotherm than Langmuir isotherm.  相似文献   

17.
In this study, poly(acrylic acid-co-acrylamide) (PAAAM) hydrogels were used to remove uranium (VI) ions in wastewater and characterized by FTIR, SEM, EDX. The effects of pH value, coexistence of ionic strength, contact time, initial U (VI) ion concentration and adsorption temperature were also studied. Adsorption data fitted well with pseudo-second-order, intra-particle diffusion model and Langmuir isotherm mode, the maximum adsorption capacity of U(VI) was 713.24 mg g?1. Thermodynamic analysis shows that the adsorption of U(VI) is spontaneous endothermic. PAAAM hydrogel has excellent regeneration performance, after five time adsorption–desorption cycles, the adsorbent still maintained 99.24% adsorption capacity.  相似文献   

18.
Pyrolytic tire char adsorbents either demineralized by nitric acid (purified char, PC) or activated with KOH-calcination (activated char, AC) were used for Cr(VI) removal from aquatic solutions and studied by adsorption kinetics, isotherms, and thermodynamics. Adsorbent’s physicochemical characteristics were studied by several techniques such as X-ray diffraction, porosimetry, scanning electron microscopy, elemental analysis, and Boehm titration. For PC, acid treatment leads partially to a mesoporous structure while for AC, KOH activation creates also a microporosity enhancing the specific surface area at 443 m2g?1. Cr(VI) adsorption onto both adsorbents followed better second-order kinetics and Langmuir isotherm models and it was exothermic (ΔH < 0) and spontaneous (ΔG < 0). The maximum Cr(VI) adsorption capacity for AC and PC was 114 and 79.47 mg g?1, respectively, at pH = 4. The present work reveals that AC and PC can be efficient sorbents for the removal of heavy metal ions, contributing both positively to wastewater treatment and waste tire pyrolysis plants.  相似文献   

19.
Optimization of Parameters for Cr(VI) Adsorption on Used Black Tea Leaves   总被引:1,自引:0,他引:1  
Dynamic characteristics of Cr(VI) sorption on used black tea leaves (UBTLs) as a low-cost adsorbent are studied. Batch experiments were conducted to evaluate the effects of Cr(VI) concentration, solution pH and temperature on the removal process. Both of adsorption and reduction, involved in the process, are affected by the processing parameters. The adsorption kinetics is described successfully using pseudo-second order rate equation and the rate constant decreases with increasing the initial concentration of Cr(VI) up to 150 mg/L (for 0.1 g/L UBTLs) then becomes slow. Experimental and calculated kinetic data for equilibrium are well expressed by Langmuir isotherm. The solution pH has a profound effect on the adsorption rate. The rate constant increases linearly with an increase in temperature, and the low value of activation energy of adsorption, 16.3 kJ/mol, indicates that Cr(VI) is easily adsorbed on UBTLs. The maximum Cr(VI) adsorptive conditions, with a minimum reduction, were achieved from the dynamics of operational parameters: the initial Cr(VI) concentration < 150 mg/L (for 0.1 g/L UBTLs); the initial solution pH = 1.54–2.00 and the processing temperature < 50 C, for the possibility of its practical application.  相似文献   

20.
The present study was undertaken to develop a novel adsorbent for heavy metal ions, and this paper presents the synthesis and characterization of a composite material-silica gel microspheres encapsulated by salicyclic acid functionalized polystyrene (SG-PS-azo-SA) with a core-shell structure. SG-PS-azo-SA was used to investigate the adsorption of Mn(II), Co(II), Ni(II), Fe(III), Hg(II), Zn(II), Cd(II), Cr(VI), Pd(II), Cu(II), Ag(I), and Au(III) from aqueous solutions. The results revealed that SG-PS-azo-SA has better adsorption capacity for Cu(II), Ag(I) and Au(III). Langmuir and Freundlich isotherm models were applied to analyze the experimental data, the best interpretation for the experimental data was given by the Langmuir isotherm equation with the maximum adsorption capacity for Cu(II), Ag(I), and Au(III) at 1.288 mmol g−1, 1.850 mmol g−1 and 1.613 mmol gt-1, respectively. Thus, silica gel encapsulated by salicyclic acid functionalized polystyrene (SG-PS-azo-SA) is favorable and useful for the removal of Cu(II), Ag(I) and Au(III) metal ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号