首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To increase the volumetric discharge capacity of negative electrode for rechargeable lithium batteries, a composite anode SnxSbyCuz has been synthesized by using high energy mechanical ball milling method. The synthesized composite anode materials have been characterized by X-ray diffraction and SEM analysis. The charge/discharge characteristics of the fabricated coin cells have been evaluated galvanostatically in the potential range 0.01–2 V using 1 M LiPF6 in 1:1 EC/DEC as electrolyte. Results indicate that the composition with 90 wt% Sn, 8 wt% Sb and 2 wt% Cu delivers an average discharge capacity of 740 mAh g−1 over the investigated 50 cycles which is a potential candidate for use as an anode material for lithium rechargeable cells.  相似文献   

2.
Silicon/carbon composite materials are prepared by pyrolysis of pitch embedded with graphite and silicon powders. As anode for lithium ion batteries, its initial reversible capacity is 800–900 mAh/g at 0.25 mA/cm2 in a voltage range of 0.02/1.5 V vs. Li. The material modification by adding a small amount of CaCO3 into precursor improves the initial reversibility (η1=84%) and suppresses the capacity fade upon cycling. A little higher insertion voltage of the composites than commercial CMS anode material improves the cell safety in the high rate charging process.  相似文献   

3.
Graphitic anode materials for lithium ion batteries processed under high humidity conditions show severe performance losses. The sensitivity of these materials towards humidity can be significantly reduced by adsorbing metal ions like silver or copper ions, with subsequent heat treatment of these composites. Results of X-ray photoelectron spectroscopy, high-resolution electron microscopy, thermogravimetry, and differential thermal analysis indicate that the deposited metals exist in metallic and carbide, MxC (M=Cu or Ag), forms. They remove or cover (i.e. deactivate) active hydrophilic sites at the surface of the graphite. These composites absorb less water during processing. The electrochemical performance, including reversible capacity, coulombic efficiency in the first cycle, and cycling behavior, is markedly improved. This approach provides a potentially powerful method to manufacture lithium ion batteries under less demanding conditions.Presented at the 3rd International Meeting on Advanced Batteries and Accumulators, 16–20 June 2002, Brno, Czech Republic  相似文献   

4.
Binder free vertical aligned (VA) CNT/sulfur composite electrodes with high sulfur loadings up to 70 wt% were synthesized delivering discharge capacities higher than 800 mAh g(-1) of the total composite electrode mass.  相似文献   

5.
All-solid-state lithium battery(ASLB)based on sulfide-based electrolyte is considered to be a candidate for the next-generation high-energy storage system.Despi...  相似文献   

6.
Within the framework of the novel strategy of the arrangement of silicon particles in a rigid matrix framework, hybrid electrodes were fabricated from mixtures of synthetic graphite with small additions of nanosilicon/solid carbon and microsilicon, natural graphite/solid carbon composites. The electrode cycling parameters achieved (high loading capacity and low accumulated irreversible capacity) are due to high density of the electrodes and formation of stable electrode|electrolyte interface.  相似文献   

7.
Lithium manganese oxide (LMO), mechano-chemically modified by ball-milling, is a potentially useful active material for high-power-density cathodes of lithium ion batteries. The present work investigates the electrochemical characteristic of a cathode prepared from a controlled mixture of nano- and micrometric LMO particles processed in this approach. The nanoparticles in the mixture support surface-localized insertion/extraction of Li and thus increase the cathode charge/discharge rates. The LMO micro-particles promote cathode cyclability by stabilizing the coexisting nanoparticles against segregation and strong electrolyte reactions. The underlying mechanisms of these effects are studied here using voltammetry, galvanostatic cycling, Ragone plot construction, and electrochemical impedance spectroscopy. The relative timescales of charge transfer and diffusion of Li+ within the LMO lattice are determined, and the criteria for material utilization during rapid charge–discharge are examined.  相似文献   

8.
Extensive studies were carried out to apply composite materials composed of polyaniline (PAn) and 2,5-dimercapto-1,3,4-thiadiazole (DMcT) to develop cathode materials which exhibit high energy densities. Previous results have established that composites of PAn and DMcT which are coated onto copper substrates exhibit greatly enhanced charge and discharge performance. It is shown that composite materials composed of DMcT, PAn, and Cu ion have the ability to be reversibly charged and discharged at ca. 260 A h per kg-cathode (ca. 830 W h per kg-cathode) for more than 80 cycles. These two results are explored in general in this contribution via investigation of the electron transfer reactions between the components using UV/Vis and investigation of the copper substrate/DMcT chemistry using electrochemical quartz crystal microbalance and phase modulated interferometric microscopy.  相似文献   

9.
Solid-state electrolytes (SSEs) are capable of inhibiting the growth of lithium dendrites, demonstrating great potential in next-generation lithium-ion batteries (LIBs). However, poor room temperature ionic conductivity and the unstable interface between SSEs and the electrode block their large-scale applications in LIBs. Composite solid-state electrolytes (CSSEs) formed by mixing different ionic conductors lead to better performance than single SSEs, especially in terms of ionic conductivity and interfacial stability. Herein, we have systematically reviewed recent developments and investigations of CSSEs including inorganic composite and organic–inorganic composite materials, in order to provide a better understanding of designing CSSEs. The comparison of different types of CSSEs relative to their parental materials is deeply discussed in the context of ionic conductivity and interfacial design. Then, the proposed ion transfer pathways and models of lithium dendrite growth in composites are outlined to inspire future development of CSSEs.

Composite solid-state electrolytes (CSSEs) formed by mixing different ionic conductors lead to better performance than a single solid-state electrolytes (SSEs), demonstrating great potentials in the next-generation lithium-ion batteries (LIBs).  相似文献   

10.
Nanocrystalline MnO thin film has been prepared by a pulsed laser deposition (PLD) method. The reversible lithium storage capacity of the MnO thin film electrodes at 0.125C is over 472 mAh g?1 (3484 mAh cm?3) and can be retained more than 90% after 25 cycles. At a rate of 6C, 55% value of the capacity at 0.125C rate can be obtained for both charge and discharge. As-prepared MnO thin film electrodes show the lowest values of overpotential for both charge and discharge among transition metal oxides. All these performances make MnO a promising high capacity anode material for Li-ion batteries.  相似文献   

11.
SnSb/C core-shell powder has been successfully prepared by modified carbothermal reduction method. The shape, size, morphology, and electrochemical properties of the SnSb/C core-shell powder have been investigated. SnSb particles are completely encapsulated by amorphous carbon shell, and the surface of SnSb/C composite has been characterized with porous structure. The composite has a relatively high BET surface area of 253 m2g?1. The composite exhibits relatively good capacity retention for 50 cycles at a constant current density of 100 mA g?1 and show excellent rate performance when the current ranges from 50 to 200 mA g?1. The improvement of reversible capacity and cyclic performance is attributed to loose and amorphous surface structure which could buffer volume variations through cycle process.  相似文献   

12.
The main challenges in development of traditional liquid lithium-sulfur batteries are the shuttle effect at the cathode caused by the polysulfide and the safety concern at the Li metal anode arose from the dendrite formation. All-solid-state lithium-sulfur batteries have been proposed to solve the shuttle effect and prevent short circuits. However, solid-solid contacts between the electrodes and the electrolyte increase the interface resistance and stress/strain, which could result in the limited electrochemical performances.In this work, the cathode of all-solid-state lithium-sulfur batteries is prepared by depositing sulfur on the surface of the carbon nanotubes(CNTs@S) and further mixing with Li_(10) Ge P_2 S_(12) electrolyte and acetylene black agents. At 60 °C, CNTs@S electrode exhibits superior electrochemical performance, delivering the reversible discharge capacities of 1193.3, 959.5, 813.1, 569.6 and 395.5 m Ah g~(-1) at the rate of 0.1, 0.5,1, 2 and 5 C, respectively. Moreover, the CNTs@S is able to demonstrate superior high-rate capability of660.3 m Ah g~(-1) and cycling stability of 400 cycles at a high rate of 1.0 C. Such uniform distribution of the CNTs, S and Li_(10) Ge P_2 S_(12) electrolyte increase the electronic and ionic conductivity between the cathode and the electrolyte hence improves the rate performance and capacity retention.  相似文献   

13.
A composite cathode was prepared from a solution containing 2,5-dimercapto-1,3,4-thiadiazole (DMcT) and polyaniline (PAn). The resulting cathode exhibits 80% of the theoretical capacity. Furthermore, an energy density of over 600 Wh/kg-cathode and a discharge voltage of 3.4 V are obtained, when it is coupled with a lithium anode. Additional advantages of the present cathode material over the conventional metal oxides are the ease in disposal by incineration, the low pollution and the low cost. Current capability of 137 A/kg-cathode is achieved by adding a polypyrrole derivative to the DMcT-PAn composite and coupling it with a copper current collector.  相似文献   

14.
15.
Under low temperature (LT) conditions (−80 °C∼0 °C), lithium-ion batteries (LIBs) may experience the formation of an extensive solid electrolyte interface (SEI), which can cause a series of detrimental effects such as Li+ deposition and irregular dendritic filament growth on the electrolyte surface. These issues ultimately lead to the degradation of the LT performance of LIBs. As a result, new electrode/electrolyte materials are necessary to address these challenges and enable the proper functioning of LIBs at LT. Given that most electrochemical reactions in lithium-ion batteries occur at the electrode/electrolyte interface, finding solutions to mitigate the negative impact caused by SEI is crucial to improve the LT performance of LIBs. In this article, we analyze and summarize the recent studies on electrode and electrolyte materials for low temperature lithium-ion batteries (LIBs). These materials include both metallic materials like tin, manganese, and cobalt, as well as non-metallic materials such as graphite and graphene. Modified materials, such as those with nano or alloying characteristics, generally exhibit better properties than raw materials. For instance, Sn nanowire-Si nanoparticles (SiNPs−In-SnNWs) and tin dioxide carbon nanotubes (SnO2@CNT) have faster Li+ transport rates and higher reversible capacity at LT. However, it′s important to note that when operating under LT, the electrolyte may solidify, leading to difficulty in Li+ transmission. The compatibility between the electrolyte and electrode can affect the formation of the solid electrolyte interphase (SEI) and the stability of the electrode/electrolyte system. Therefore, a good electrode/electrolyte system is crucial for successful operation of LIBs at LT.  相似文献   

16.
The importance of exploring new low-cost and safe cathodes for large-scale lithium batteries has led to increasing interest in Li(2)FeSiO(4). The structure of Li(2)FeSiO(4) undergoes significant change on cycling, from the as-prepared γ(s) form to an inverse β(II) polymorph; therefore it is important to establish the structure of the cycled material. In γ(s) half the LiO(4), FeO(4), and SiO(4) tetrahedra point in opposite directions in an ordered manner and exhibit extensive edge sharing. Transformation to the inverse β(II) polymorph on cycling involves inversion of half the SiO(4), FeO(4), and LiO(4) tetrahedra, such that they all now point in the same direction, eliminating edge sharing between cation sites and flattening the oxygen layers. As a result of the structural changes, Li(+) transport paths and corresponding Li-Li separations in the cycled structure are quite different from the as-prepared material, as revealed here by computer modeling, and involve distinct zigzag paths between both Li sites and through intervening unoccupied octahedral sites that share faces with the LiO(4) tetrahedra.  相似文献   

17.
Platelike CoO/carbon nanofiber (CNF) composite materials with porous structures are synthesized from the thermal decomposition and recrystallization of β-Co(OH)2/CNF precursor without the need for a template or structure-directing agent. As negative electrode materials for lithium-ion batteries, the platelike CoO/CNF composite delivers a high reversible capacity of 700 mAh g−1 for a life extending over hundreds of cycles at a constant current density of 200 mA g−1. More importantly, the composite electrode shows significantly improved rate capability and electrochemical reversibility. Even at a current of 2 C, the platelike CoO/CNF composite maintain a capacity of 580 mAh g−1 after 50 discharge/charge cycles. The improved cycling stability and rate capability of the CoO/CNF composite electrodes may be attributed to synergistic effect of the porous structural stability and improved conductivity through CNF connection.  相似文献   

18.
19.
锂离子电池锡基复合氧化物负极材料的研究   总被引:4,自引:1,他引:4  
采用共沉淀法制备了SnSbO2.5和SnGeO3两种锡基复合氧化物粉末.XRD分析表明,这两种锡基复合氧化物的共同特点是在27°~28°处有波峰,属无定型结构.将其分别作为锂离子电池负极材料的活性物质,利用恒电流电池测试仪研究它们的电化学性能.实验表明,这两种锡基复合氧化物都有较高的电化学容量,SnSbO2.5的可逆容量为1200mA·h/g,SnGeO3的可逆容量为750mA·h/g.这两种锡基复合氧化物的电化学容量远高于碳材料(石墨的理论容量为372mA·h/g),因此,这两种锡基复合氧化物可以作为锂离子电池负极材料的候选材料.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号