首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Methyl radicals (CH3) and atomic hydrogen (H) are dominant radicals in low-temperature plasmas from methane. The surface reactions of these radicals are believed to be key steps leading to deposition of amorphous hydrogenated carbon (a-C:H) films or polycrystalline diamond in these discharges. The underlying growth mechanism is studied, by exposing an a-C:H film to quantified radical beams of H and CH3. The deposition or etching rate is monitored via ellipsometry and the variation of the stoichiometry is monitored via isotope labeling and infrared spectroscopy. It was shown recently that, at 320 K, methyl radicals have a sticking coefficient of 10-4 on a-C:H films, which rises to 10-2 if an additional flux of atomic hydrogen is present. This represents a synergistic growth mechanism between H and CH3. From the interpretation of the infrared data, a reaction scheme for this type of film growth is developed: atomic hydrogen creates dangling bonds by abstraction of bonded hydrogen within a surface layer corresponding to the range of H in a-C:H films. These dangling bonds serve at the physical surface as adsorption sites for incoming methyl radicals and beneath the surface as radicalic centers for polymerization reactions leading to carbon–carbon bonds and to the formation of a dense a-C:H film. Received: 18 July 2000 / Accepted: 12 December 2000 / Published online: 3 April 2001  相似文献   

2.
Hydrogenated Cr-incorporated carbon films(Cr/a-C:H) are deposited successfully by using a dc reactive magnetron sputtering system.The structure and mechanical properties of the as-deposited Cr/a-C:H films are characterized systematically by field-emission scanning electron microscope,x-ray diffraction,Raman spectra,nanoindentation and scratch.It is shown that optimal Cr metal forms nanocrystalline carbide to improve the hardness,toughness and adhesion strength in the amorphous carbon matrix,which possesses relatively higher nano-hardness of 15.7GPa,elastic modulus of 126.8 GPa and best adhesion strength with critical load(L_c) of36 N for the Cr/a-C:H film deposited at CH_4 flow rate of 20 sccm.The friction and wear behaviors of as-deposited Cr/a-C:H films are evaluated under both the ambient air and deionized water conditions.The results reveal that it can achieve superior low friction and anti-wear performance for the Cr/a-C:H film deposited at CH_4 flow rate of 20 sccm under the ambient air condition,and the friction coefficient and wear rate tested in deionized water condition are relatively lower compared with those tested under the ambient air condition for each film.Superior combination of mechanical and tribological properties for the Cr/a-C:H film should be a good candidate for engineering applications.  相似文献   

3.
In this work, plasma enhanced chemical vapour deposition was used to prepare hydrogenated amorphous carbon films (a-C:H) on different substrates over a wide range of thickness. In order to observe clear substrate effect the films were produced under identical growth conditions. Raman and near edge X-ray absorption fine structure (NEXAFS) spectroscopies were employed to probe the chemical bonding of the films. For the films deposited on silicon substrates, the Raman ID/IG ratio and G-peak positions were constant for most thickness. For metallic and polymeric substrates, these parameters increased with film thickness, suggesting a change from a sp3-bonded hydrogenated structure to a more sp2 network, NEXAFS results also indicate a higher sp2 content of a-C:H films grown on metals than silicon. The metals, which are poor carbide precursors, gave carbon films with low adhesion, easily delaminated from the substrate. The delamination can be decreased/eliminated by deposition of a thin (∼10 nm) silicon layer on stainless steel substrates prior to a-C:H coatings. Additionally we noted the electrical resistivity decreased with thickness and higher dielectric breakdown strength for a-C:H on silicon substrate.  相似文献   

4.
Amorphous-carbon (a-C) films were deposited on a single-crystal silicon substrate by vacuum vapor deposition system and these amorphous carbon films were implanted with 110 keV C+ at fluences of 1 × 1017 ions/cm2. The effect of ion mixing on the surface morphology, friction behavior and adhesion strengths of amorphous carbon films was examined making use of atomic force microscopy (AFM), ball-on-disk reciprocating friction tester, nano-indentation system and scanning electron microscope (SEM). The changes in chemical composition and structure were investigated by using X-ray photoelectron spectroscopy (XPS). The results show that the anti-wear life and adhesion of amorphous carbon films on the Si substrates were significantly increased by C ion implantation. The SiC chemical bonding across the interface plays a key role in the increase of adhesion strength and the anti-wear life of amorphous carbon film. The friction and wear mechanisms of amorphous carbon film under dry friction condition were also discussed.  相似文献   

5.
This article reports the use of dip pen nanolithography (DPN) for the study of adsorption of bovine serum albumin (BSA) proteins on amorphous carbon surfaces; tetrahedral amorphous carbon (t-aC) and silicon doped hydrogenated amorphous carbon (a-C:H:Si). Contact angle study shows that the BSA proteins reduce the contact angle on both carbon materials. We also noticed that the drop volume dependence is consistent with a negative line tension, i.e. due to an attractive protein/surface interaction. The DPN technique was used to write short-spaced (100 nm) BSA line patterns on both samples. We found a line merging effect, stronger in the case of the a-C:H:Si material. We discuss possible contributions from tip blunting, scratching, cross-talk between lever torsion and bending and nano-shaving of the patterns. We conclude that the observed effect is caused in large measure by the diffusion of BSA proteins on the amorphous carbon surfaces. This interpretation of the result is consistent with the contact angle data and AFM force curve analysis indicating larger tip/surface adhesion and spreading for the a-C:H:Si material. We conclude by discussing the advantages and limitations of DPN lithography to study biomolecular adsorption in nanoscale wetting environments.  相似文献   

6.
周升国  刘正兵  王顺才 《中国物理 B》2017,26(1):18101-018101
WC cemented carbide suffers severe wear in water environments. A novel carbon-based film could be a feasible way to overcome this drawback. In this study, a rare earth Ce-modified(Ti,Ce)/a-C:H carbon-based film is successfully prepared on WC cemented carbide using a DC reactive magnetron sputtering process. The microstructure, mechanical properties,and tribological behavior of the as-prepared carbon-based film are systematically investigated. The results show that the doping Ti forms Ti C nanocrystallites that are uniformly dispersed in the amorphous carbon matrix, whereas the doping Ce forms CeO_2 that exists with the amorphous phase in the co-doped(Ti,Ce)/a-C:H carbon-based film. The mechanical properties of this(Ti,Ce)/a-C:H film exhibit remarkable improvements, which could suggest higher hardness and elastic modulus as well as better adhesive strength compared to solitary Ti-doped Ti/a-C:H film. In particular, the as-prepared(Ti,Ce)/a-C:H film presents a relatively low friction coefficient and wear rate in both ambient air and deionized water,indicating that(Ti,Ce)/a-C:H film could feasibly improve the tribological performance of WC cemented carbide in a water environment.  相似文献   

7.
Jun Xie 《哲学杂志》2013,93(11):820-832
Abstract

Ultrathin hydrogenated amorphous carbon (a-C:H) films deposited by plasma-enhanced chemical vapor deposition (PECVD) and hydrogen-free amorphous carbon (a-C) films of similar thickness deposited by filtered cathodic vacuum arc (FCVA) were subjected to rapid thermal annealing (RTA). Cross-sectional transmission electron microscopy (TEM) and electron energy loss spectroscopy (EELS) were used to study the structural stability of the films. While RTA increased the thickness of the intermixing layer and decreased the sp3 content of the a-C:H films, it did not affect the thickness or the sp3 content of the a-C films. The superior structural stability of the FCVA a-C films compared with PECVD a-C:H films, demonstrated by the TEM and EELS results of this study, illustrates the high potential of these films as protective overcoats in applications where rapid heating is critical to the device functionality and performance, such as heat-assisted magnetic recording.  相似文献   

8.
We demonstrate an isolated magnetic interface anisotropy in amorphous CoFeB films on (Al)GaAs(001), similar to that in epitaxial films but without a magnetocrystalline anisotropy term. The direction of the easy axis corresponds to that due to the interfacial interaction proposed for epitaxial films. We show that the anisotropy is determined by the relative orbital component of the atomic magnetic moments. Charge transfer is ruled out as the origin of the interface anisotropy, and it is postulated that the spin-orbit interaction in the semiconductor is crucial in determining the magnetic anisotropy.  相似文献   

9.
In this paper we report on the electrical and optical properties of amorphous carbon (a-C) and hydrogenated amorphous carbon (a-C:H) films. Resistivity of both types of films decreases with increase in temperature. At lower temperatures (60-250 K) the electron transport is due to variable range hopping for the a-C films. At higher temperatures (300-430 K) it is thermally activated for both types of films. Analysis of the heterojunction between diamond-like carbon (DLC) and bulk silicon (Si) leads to the conclusion that our a-C films are of n-type and our a-C:H films are of p-type. The optical measurements with DLC revealed a Tauc bandgap of 0.6 eV for the a-C films and 1-1.2 eV for the a-C:H films. An Urbach energy around 170 meV could be determined for the a-C:H films. Strain versus resistance plots were measured resulting in piezoresistive gauge factors around 50 for the a-C films and in between 100 and 1200 for the a-C:H films.  相似文献   

10.
Within the density functional theory, ab initio calculations of the electronic structure and magnetic properties of the (110) interface between the NiMnSb alloy and GaAs in dependence on configuration of contact atoms are carried out. It is found that two out of six possible atomic configurations of the interface exhibit a high degree of spin polarization, which attains 100% for one of the interfacial structures studied here. It is shown that contacts with a high degree of spin polarization are the most stable with an adhesion energy of about 1.3 J/m2.  相似文献   

11.
占空比对微球a-C:H薄膜制备的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
采用低压等离子体化学气相沉积方法(LPPCVD),以反式二丁烯(T2B)和氢气(H2)为工作气体,利用间歇跳动模式在微球表面制备30 μm厚a-C:H涂层.利用原子力显微镜(AFM)和X射线照相技术对涂层表面形貌及壁厚均匀性进行表征,结果表明:随占空比减小,制备出的微球a-C:H薄膜表面粗糙度呈下降趋势,而壁厚均匀性随占空比的减小变化不明显;当占空比为1/5时,在直径为(280±50) μm 的聚乙烯醇-聚苯乙烯(PVA-PS)双层球表面制备出30 μm厚的a-C:H涂层,表面均方根粗糙度(RMS)低于30 nm;占空比为1/7时,不能维持微球的稳定跳动. 关键词: 微球 a-C:H薄膜 粗糙度 壁厚均匀性  相似文献   

12.
The surface properties of IC packaging molds such as anti-sticking, wear, and corrosion resistances can be improved by hard surface coating. In this study, Ti/TiN/TiCN/a-C:H thin film coatings were deposited on IC cavity bar molds in a hybrid PVD-ECR-CVD coating system. The structure of the a-C:H films was delineated by a function of bias voltages by Raman spectroscopy. Excellent adhesion and lower friction coefficients of a-C:H films were also assessed. According to the normal adhesion force measurement, a-C:H coating was superior to that of typical electroplated hard chromium (Ep-Cr). Performance evaluation showed that the a-C:H coating could increase the number of molding injections in IC package production lines by 216%.  相似文献   

13.
We exposed a freshly deposited boron-doped, hydrogenated amorphous silicon (a-Si:H) layer to hydrogen plasma under conditions of chemical transport. In situ spectroscopic ellipsometry measurements revealed that atomic hydrogen impinging on the film surface behaves differently before and after crystallization. First, the plasma exposure increases hydrogen solubility in the a-Si:H network leading to the formation of a hydrogen-rich subsurface layer. Then, once the crystallization process engages, the excess hydrogen starts to leave the sample. We have attributed this unusual evolution of the excess hydrogen to the grown hydrogenated microcrystalline (μc-Si:H) layer, which gradually prevents the atomic hydrogen from the plasma reaching the μc-Si:H/a-Si:H interface. Consequently, hydrogen solubility, initially increased by the hydrogen plasma, recovers the initial value of an untreated a-Si:H material. To support the theory that the outdiffusion is a consequence and not the cause of the μc-Si:H layer growth, we solved the combined diffusion and trapping equations, which govern hydrogen diffusion into the sample, using appropriate approximations and a specific boundary condition explaining the lack of hydrogen injection during μc-Si:H layer growth.  相似文献   

14.
吴红丽  赵新青  宫声凯 《物理学报》2008,57(12):7794-7799
采用基于密度泛函理论的第一性原理平面波超软赝势方法,计算了Nb掺杂对TiO2/NiTi界面电子结构的影响.体系生成能的计算结果表明,4种TiO2/NiTi界面结构中,NiTi中Ti原子和TiO2中O原子相邻的界面,即Ti/O界面的生成能最大,结构最稳定.在Ti/O界面结构优化的基础上,态密度、电荷分布以及集居数的计算结果均表明:Nb原子取代界面上的Ti原子后,界面原子之间的结合力增强,且界面附近的基体和氧化层中原子之间的相互作用也增加,有利 关键词: NiTi金属间化合物 2/NiTi界面')" href="#">TiO2/NiTi界面 电子结构 第一性原理计算  相似文献   

15.
16.
The epitaxial-Si(epi-Si) growth on the crystalline Si(c-Si) wafer could be tailored by the working pressure in plasmaenhanced chemical vapor deposition(PECVD).It has been systematically confirmed that the epitaxial growth at the hydrogenated amorphous silicon(a-Si:H)/c-Si interface is suppressed at high pressure(hp) and occurs at low pressure(1p).The hp a-Si:H,as a purely amorphous layer,is incorporated in the 1p-epi-Si/c-Si interface.We find that:(i) the epitaxial growth can also occur at a-Si:H coated c-Si wafer as long as this amorphous layer is thin enough;(ii) with the increase of the inserted hp layer thickness,lp epi-Si at the interface is suppressed,and the fraction of a-Si:H in the thin films increases and that of c-Si decreases,corresponding to the increasing minority carrier lifetime of the sample.Not only the epitaxial results,but also the quality of the thin films at hp also surpasses that at lp,leading to the longer minority carrier lifetime of the hp sample than the lp one although they have the same amorphous phase.  相似文献   

17.
彭少麒  刘国洪 《物理学报》1988,37(7):1209-1212
本文利用热释氢和红外吸收研究了H在非晶态碳(a-C:H)膜中的含量和组态。实验结果表明,随着样品制备时衬底温度的增大:1)H在a-C:H膜中的组态从两相结构过渡为单相结构;2)H在a-C:H膜中的含量单调减少;3)a-C:H膜中sP3/sP2键合比例单调增大。 关键词:  相似文献   

18.
Polycrystalline gallium nitride(GaN) thin films were deposited on Si(100) substrates via plasma-enhanced atomic layer deposition(PEALD) under optimal deposition parameters. In this work, we focus on the research of the GaN/Si(100)interfacial properties. The x-ray reflectivity measurements show the clearly-resolved fringes for all the as-grown GaN films, which reveals a perfectly smooth interface between the GaN film and Si(100), and this feature of sharp interface is further confirmed by high resolution transmission electron microscopy(HRTEM). However, an amorphous interfacial layer(~ 2 nm) can be observed from the HRTEM images, and is determined to be mixture of Ga_xO_y and GaN by xray photoelectron spectroscopy. To investigate the effect of this interlayer on the GaN growth, an AlN buffer layer was employed for GaN deposition. No interlayer is observed between GaN and AlN, and GaN shows better crystallization and lower oxygen impurity during the initial growth stage than the GaN with an interlayer.  相似文献   

19.
The interfacial characteristics of Al/Al2O3/ZnO/n-GaAs metal-oxide-semiconductor (MOS) capacitor are investigated. The results measured by X-ray photoelectron spectroscopy (XPS) and high-resolution transmission electron microscopy (HRTEM) show that the presence of ZnO can effectively suppress the formations of oxides at the interface between the GaAs and gate dielectric and gain smooth interface. The ZnO-passivated GaAs MOS capacitor exhibits a very small hysteresis and frequency dispersion. Using the Terman method, the interface trap density is extracted from C-V curves. It is found that the ZnO layer can effectively improve the interface quality.  相似文献   

20.
张传国  杨勇  郝汀  张铭 《物理学报》2015,64(1):18102-018102
利用分子动力学模拟方法研究了CH2基团轰击金刚石(111)面所形成的无定形碳氢薄膜(a-C:H)的生长过程. 结构分析表明, 得到的无定形碳氢薄膜中碳原子的局域结构(如C–C第一近邻数)与其中氢原子的含量密切相关. CH2 基团入射能量的增加会导致得到的薄膜的氢含量降低, 从而改变薄膜中类sp3成键碳原子的比例.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号