首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
文中利用fluent软件对新型径轴向混合填充式回热器内工质稳态流动和交变流动进行数值模拟,模拟结果显示,稳态流动时工质进口和径轴向填料的交界处工质压降较大;径向填料内工质流动分布均匀性优于轴向填料,但流动阻力较大.对交变流动模拟可以发现,在整个交变过程中填料丝两边区域流速大小和方向变化最为明显.  相似文献   

2.
A necessary and sufficient condition is derived for the existence of the axisymmetric mode of cylindrical shells with a radial displacement having one half wave along the axis and axial displacement restrained at both ends. The condition is purely geometric and consists of an upper bound on the mean radius to thickness ratio for a given fixed value of the length to mean radius ratio, above which the mode with one half wave in radial displacement along the axis ceases to exist. The proof is based on enforcing two basic lemmas concerned with the simplicity of the eigenvalues of the shell and the uniform ordering of these eigenvalues with the number of nodes of their corresponding radial displacement eigenfunctions.  相似文献   

3.
A numerical technique is developed for the analysis of dissipative silencers of arbitrary, but axially uniform, cross section. Mean gas flow is included in a central airway that is separated from a bulk reacting porous material by a concentric perforate screen. The analysis begins by employing the finite element method to extract the eigenvalues and associated eigenvectors for a silencer of infinite length. Point collocation is then used to match the expanded acoustic pressure and velocity fields in the silencer chamber to those in the inlet and outlet pipes. Transmission loss predictions are compared with experimental measurements taken for two automotive dissipative silencers with elliptical cross sections. Good agreement between prediction and experiment is observed both without mean flow and for a mean flow Mach number of 0.15. It is demonstrated also that the technique presented offers a considerable reduction in the computational expenditure when compared to a three-dimensional finite element analysis.  相似文献   

4.
Dissipative splitter silencers are often used to reduce the noise emitted in ventilation and gas turbine systems. It is well known that the acoustic performance of a splitter silencer changes under the influence of the convective effects of a mean gas flow and so in this article a theoretical model is developed to include the effects of mean flow. The theoretical model is based on a hybrid finite element method which enables the inclusion of bull nose fairings and a perforated screen separating the mean gas flow from a bulk reacting porous material. Predictions are compared against experimental measurements obtained both with and without mean flow. Good agreement between prediction and measurement is generally observed in the absence of mean flow, although it is seen that for silencers with a low percentage open area the silencer insertion loss is over predicted at higher frequencies. When mean flow is present, problems with the experimental methodology are observed at relatively modest mean flow velocities, and so comparison between prediction and experiment is limited to relatively low face velocities. However, experiment and theory both show that the insertion loss reduces at low frequencies when mean flow is in the direction of sound propagation, and at high frequencies the influence of mean flow is generally much smaller. Following additional theoretical investigations it is concluded that the influence of mean flow on splitter silencer performance should be accounted for at low frequencies when silencer airway velocities are greater than about 20 m/s; however, at higher frequencies one may generally neglect the effect of mean flow, even at higher velocities. Predictions obtained using the hybrid method are also compared to a simplified point collocation approach and it is demonstrated that the computationally efficient point collocation method may be used to investigate the effects of mean flow in a splitter silencer without loss of accuracy.  相似文献   

5.
A mode matching method for predicting the transmission loss of a cylindrical shaped dissipative silencer partially filled with a poroelastic foam is developed. The model takes into account the solid phase elasticity of the sound-absorbing material, the mounting conditions of the foam, and the presence of a uniform mean flow in the central airway. The novelty of the proposed approach lies in the fact that guided modes of the silencer have a composite nature containing both compressional and shear waves as opposed to classical mode matching methods in which only acoustic pressure waves are present. Results presented demonstrate good agreement with finite element calculations provided a sufficient number of modes are retained. In practice, it is found that the time for computing the transmission loss over a large frequency range takes a few minutes on a personal computer. This makes the present method a reliable tool for tackling dissipative silencers lined with poroelastic materials.  相似文献   

6.
方智  季振林 《声学学报》2015,40(3):404-412
将数值模态匹配法(NMM)扩展应用于计算有均匀流存在时直通穿孔管抗性和阻性消声器的声学特性,编写了相应的计算程序。对于圆形同轴穿孔管抗性和阻性消声器,应用数值模态匹配法计算得到的传递损失结果与实验测量结果吻合良好,从而验证了计算方法和计算程序的正确性。进而应用数值模态匹配法研究了运流效应和穿孔阻抗以及穿孔管偏移对穿孔管抗性和阻性消声器传递损失的影响。研究结果表明,马赫数越高,穿孔管抗性消声器在中高频的消声量越高,阻性消声器在整体频段内的消声性能越差;低马赫数时运流效应对穿孔管抗性消声器的影响可以忽略,马赫数较高时运流效应和穿孔阻抗的影响比较明显;对于穿孔管阻性消声器,穿孔阻抗对消声器声学特性的影响比运流效应的影响小,但是与真实值的差别不可忽略;穿孔管偏移对消声器声学特性的影响与频率和消声器结构均相关。  相似文献   

7.
The kinematic dynamo approximation describes the generation of magnetic field in a prescribed flow of electrically-conducting liquid. One of its main uses is as a proof-of-concept tool to test hypotheses about self-exciting dynamo action. Indeed, it provided the very first quantitative evidence for the possibility of the geodynamo. Despite its utility, due to the requirement of resolving fine structures, historically, numerical work has proven difficult and reported solutions were often plagued by poor convergence. In this paper, we demonstrate the numerical superiority of a Galerkin scheme in solving the kinematic dynamo eigenvalue problem in a full sphere. After adopting a poloidal–toroidal decomposition and expanding in spherical harmonics, we express the radial dependence in terms of a basis of exponentially convergent orthogonal polynomials. Each basis function is constructed from a terse sum of one-sided Jacobi polynomials that not only satisfies the boundary conditions of matching to an electrically insulating exterior, but is everywhere infinitely differentiable, including at the origin. This Galerkin method exhibits more rapid convergence, for a given problem size, than any other scheme hitherto reported, as demonstrated by a benchmark of the magnetic diffusion problem and by comparison to numerous kinematic dynamos from the literature. In the axisymmetric flows we consider in this paper, at a magnetic Reynolds number of O(100), a convergence of 9 significant figures in the most unstable eigenvalue requires only 40 radial basis functions; alternatively, 4 significant figures requires 20 radial functions. The terse radial discretization becomes particularly advantageous when considering flows whose associated numerical solution requires a large number of coupled spherical harmonics. We exploit this new method to confirm the tentatively proposed positive growth rate of the planar flow of Bachtiar et al. [4], thereby verifying a counter-example to the Zel’dovich anti-dynamo theorem in a spherical geometry.  相似文献   

8.
This paper presents a method of theoretical treatment of acoustic coupling due to flexural vibration of perforated plates and plates of porous elastic materials. The analytical model is developed by introducing flow continuity at the plate surface in a spatially mean sense and air-solid interaction within the plate material. To demonstrate the method of application, some fundamental acoustic problems based on a classical thin-plate theory are analyzed and discussed in relation to the interactive effect of flexural vibration and plate permeability. For acoustic radiation from a vibrating plate excited by a harmonic point-force, the attenuation effect of power radiation appears at frequencies below the critical frequency of coincidence. In the problem of sound absorption of a perforated plate or a plate of porous elastic material backed by an air layer, as permeability decreases, the effect of plate vibration increases. For perforated absorber systems including plate vibration effects, the trend of variation from ordinary theory depends on plate thickness.  相似文献   

9.
10.
I.lntroductionTheac0usticperformanccofmicropcrforatedmumerhasbeengreatlynoticedinre-ccntyears.Especially,itshighsi1encingva1ueandbroadsi1encingfrequencyrangeenableittobeusedwidelyinmanyyiclds,suchasvehicleexhaustsystem,ventilator.Butitisdifficulttodesignagoodsilcnccrbecauseoritscomp1exacousticperformanccwithinPerforatedtubes.Thegoverningwaveequationofmicroperforatedmufflerisnotlinearduetothenonuniformmassflowofgasaswc11asthetcmpcraturegradientalongthePerforatedducts.Inordertoutilizethegoodsi…  相似文献   

11.
Being installed in tanks, screens play the role of slosh-suppressing devices which may strongly change resonant sloshing frequencies and yield an extra nonlinear damping due to cross-flow resulting in either flow separation or jet flow. Employing the linear sloshing theory and domain decomposition method, we construct an accurate analytical approximation of the natural sloshing modes in a rectangular tank with a slat-type screen at the tank middle. Two-dimensional irrotational flow of an ideal incompressible liquid is assumed. Because the considered flow model does not account for flow separation and jet flow at the screen, the velocity field is locally singular at the sharp edges. The constructed solution captures this singularity. Analyzing this solution establishes a complex dependence of the natural sloshing frequencies on the solidity ratio, the number of submerged screen gaps, the liquid depth, and the position of perforated openings relative to the mean free surface. Results are compared with experimental data. Natural surface wave profiles are discussed in the context of a jump of the velocity potential at the screen and the local inflow component to the screen.  相似文献   

12.
The dynamics of spray swirling flames is investigated by combining experiments on a single sector generic combustor and large eddy simulations of the same configuration. Measurements and calculations correspond to a self-sustained limit cycle operation where combustion coupled by an axial quarter wave acoustic mode induces large amplitude oscillations of pressure in the system. A detailed analysis of the mechanisms controlling the process is carried out first by comparing the measured and calculated spray and flame dynamics. Considering in a second stage that the spray and flame are compact with respect to the acoustic wavelength the analysis can be simplified by defining state variables that are obtained by taking averages over the combustor cross section and representing the behavior of these average quantities as a function of the axial coordinate and time. This reveals a first region in which essentially convective processes prevail. The convective heat release rate then couples further downstream with the pressure field giving rise to positive Rayleigh source terms which feed energy in the axial acoustic mode. In the convective region, the swirl number features oscillations around its mean value with an impact on the flow aerodynamics and flame radial displacement. Fluctuations in the fuel flow rate are initiated at the injector exhaust and likewise convected downstream. The total mass flow rate that exhibits strong convective disturbances is dominated further downstream by the acoustic motion. This information provides new insights on the convective-acoustic coupling that controls the heat release rate disturbances and reveals the time delays governing the combustion oscillation process.  相似文献   

13.
The magnetic field measured in the Madison dynamo experiment shows intermittent periods of growth when an axial magnetic field is applied. The geometry of the intermittent field is consistent with the fastest-growing magnetic eigenmode predicted by kinematic dynamo theory using a laminar model of the mean flow. Though the eigenmodes of the mean flow are decaying, it is postulated that turbulent fluctuations of the velocity field change the flow geometry such that the eigenmode growth rate is temporarily positive. Therefore, it is expected that a characteristic of the onset of a turbulent dynamo is magnetic intermittency.  相似文献   

14.
景小东  孙晓峰 《声学学报》1997,22(2):167-175
本文对一种新型声衬一通气声衬的声学特性进行了实验研究。首先,根据实验装置的实际结构给出了通气声衬反射系数的理论计算公式,并使用不同孔径和穿孔率的穿孔板考察了通气声衬的特性参数随频率和气流速度的变化规律,理论与实验符合得较好,其结果表明:适当地选择声衬的几何参数和气流速度可以使通气声衬在共振频率处的吸声系数达到或接近于1.0。其次,本文对共振式声衬和通气声衬的特性进行了比较,对于大孔径穿孔板,前者的吸收频带较窄,而通过合理选择通气速度,则可以设计出高吸声系数和宽频带的通气声衬。最后,本文还对相同几何参数的穿孔板进行了吹气和吸气的对比实验。  相似文献   

15.
对向心透平叶轮内部复杂流动在级环境下进行了全三维黏性数值模拟,结合拓扑学原理分析了设计工况和非设计工况下其内流动分离及各种涡系发展的演变过程,初步建立了向心透平叶轮内的旋涡模型,阐述了流动损失的形成机理。研究表明:向心透平叶轮内部涡系与轴流式透平存在较大差别,且流动分离及涡系主要集中在吸力面侧;设计工况下向心透平叶轮内的主要旋涡包括马蹄涡、通道涡及泄漏涡,其主要表现为通道涡与泄漏涡相互影响和掺混,是主要损失的形成原因;非设计工况下,主流在叶轮叶片前缘处发生大范围的分离及回流,造成了较大的能量损失,但二次流损失所占比例较小。  相似文献   

16.
Identifying an appropriate method for modelling automotive dissipative silencers normally requires one to choose between analytic and numerical methods. It is common in the literature to justify the choice of an analytic method based on the assumption that equivalent numerical techniques are more computationally expensive. The validity of this assumption is investigated here, and the relative speed and accuracy of two analytic methods are compared to two numerical methods for a uniform dissipative silencer that contains a bulk reacting porous material separated from a mean gas flow by a perforated pipe. The numerical methods are developed here with a view to speeding up transmission loss computation, and are based on a mode matching scheme and a hybrid finite element method. The results presented demonstrate excellent agreement between the analytic and numerical models provided a sufficient number of propagating acoustic modes are retained. However, the numerical mode matching method is shown to be the fastest method, significantly outperforming an equivalent analytic technique. Moreover, the hybrid finite element method is demonstrated to be as fast as the analytic technique. Accordingly, both numerical techniques deliver fast and accurate predictions and are capable of outperforming equivalent analytic methods for automotive dissipative silencers.  相似文献   

17.
利用粒子图像速度场测量技术(PIV)对不同工况下的旋流非预混燃烧流场进行了测量,考察不同燃空速度比下旋流火焰的流动特性.结果表明,轴向截面上径向平均速度流场以燃烧器轴线呈中心对称,轴向平均速度、轴向脉动速度和径向脉动速度沿燃烧器轴线成对称分布,且轴向平均速度和轴向脉动速度的最大值出现在轴线处.随燃空速度比的增大,轴向平均速度和脉动速度增大,随着与燃烧器表面的距离增加,流场截面上轴向平均速度和脉动速度差异不断减小.  相似文献   

18.
锂是一种重要的金属材料,广泛应用于核工业、光电等行业,在经济建设中占据重要地位。地热资源是指能被人类利用的地球内部的地热能、地热流体及其矿物组分。地热水中矿物质种类丰富,我国液体锂矿储量可观。开发一种快速准确的分析测试方法,对锂矿的勘测、开发、利用具有重要的意义。电感耦合等离子体光谱法测定地热水中锂时,样品基体不会产生显著的谱线干扰,但会带来严重的基体效应。地热水中高浓度的钠、钾、钙、镁等易电离元素对锂的检测有很强的增敏作用,且四种元素在不同观测方式下增敏程度各异,轴向观测受基体干扰程度比径向更大。而且基体增敏作用不是四种离子的简单加和。实验还发现,样品基体对锂的干扰程度受雾化气流速影响很大。在较低流速下,径向观测和轴向观测下锂的回收率均随着雾化气流速的增大而减小。在中高流速下,随着雾化气流速的增大而增大。当地热水基体元素组成相差很多时,很难通过调整雾化气流速控制锂的测试准确度,不适合批量样品分析。为简便有效减小基体干扰,采用部分基体匹配法对地热水样品进行分析测试。在标准溶液和实际样品中加入一定量氯化钠溶液,可有效降低地热水基体干扰。该方法检出限与无基体标准曲线法对比,检出限并无显著增大。该方法检出限是0.20 μg·L-1(轴向)和0.41 μg·L-1(径向),无基体标准曲线法检出限是0.11 μg·L-1(轴向)和0.39 μg·L-1(径向)。通过加标回收率试验和稀释法试验验证方法准确性。三个不同基体的地热水样品加标回收率在96.5%~105.6%之间,相对标准偏差(RSD)<2%。结果与电感耦合等离子体质谱法相吻合。稀释法验证试验中,稀释样测试浓度与原样测试结果一致(±2.0%)。改进的基体匹配法可有效降低易电离元素带来的基体干扰。本方法简便、快速、高效,满足大批量地热水中锂的分析测试要求。  相似文献   

19.
为深化缘线匹配对叶轮机非定常流动影响的认识,本文以关注尾迹撞击叶表展向轨迹为出发点,围绕缘线匹配对叶轮机非定常流动及性能影响进行了初步数值探索.研究表明:不同缘线匹配时叶片整体性能参数具有不同的脉动水平;给定缘线匹配下,整体性能参数脉动幅值随工况几乎不变或变化很缓;在设计点为达到降低某种脉动目的而实施的缘线匹配在非设计点同样有效;尽管微弱,数值模拟中还发现缘线匹配对上游尾迹随流掺混产生影响;缘线匹配严重影响时均相关项量值水平,尤其在叶尖、叶根和前缘附近.  相似文献   

20.
矢量拖线阵水听器流噪声响应特性   总被引:1,自引:0,他引:1       下载免费PDF全文
时胜国  于树华  时洁  马根卯 《物理学报》2015,64(15):154306-154306
针对传统拖线阵流噪声理论的局限性, 建立了完善的矢量拖线阵流噪声理论分析方法, 可全面准确地揭示矢量拖线阵流噪声响应特性. 基于细长圆柱的湍流边界层压力起伏Carpenter模型, 采用波数-频率谱分析方法对矢量拖线阵流噪声响应特性进行了理论研究, 导出了圆柱形矢量水听器流噪声响应的声压和振速自功率谱及其互功率谱的解析表达式, 定量分析了流噪声响应功率谱与拖曳速度、水听器尺寸、套管尺寸和材料等参数之间变化规律; 另外, 还讨论了圆柱形矢量水听器偏离护套轴线时矢量拖线阵流噪声响应, 导出了流噪声响应的声压、径向和轴向振速自功率谱及其互功率谱的解析表达式, 数值计算结果表明: 轴线偏移距离对声压和轴向振速的高频噪声的影响要大于对低频噪声的影响, 而对径向振速的全频段噪声都有明显影响, 且对振速分量影响要远大于对声压影响.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号