首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Completely renormalized (CR) coupled-cluster (CC) approaches, such as CR-CCSD(T), in which one corrects the standard CC singles and doubles (CCSD) energy for the effects of triply (T) and other higher-than-doubly excited clusters [K. Kowalski and P. Piecuch, J. Chem. Phys. 113, 18 (2000)], are reformulated in terms of the left eigenstates Phimid R:L of the similarity-transformed Hamiltonian of CC theory. The resulting CR-CCSD(T)(L) or CR-CC(2,3) and other CR-CC(L) methods are derived from the new biorthogonal form of the method of moments of CC equations (MMCC) in which, in analogy to the original MMCC theory, one focuses on the noniterative corrections to standard CC energies that recover the exact, full configuration-interaction energies. One of the advantages of the biorthogonal MMCC theory, which will be further analyzed and extended to excited states in a separate paper, is a rigorous size extensivity of the basic ground-state CR-CC(L) approximations that result from it, which was slightly violated by the original CR-CCSD(T) and CR-CCSD(TQ) approaches. This includes the CR-CCSD(T)(L) or CR-CC(2,3) method discussed in this paper, in which one corrects the CCSD energy by the relatively inexpensive noniterative correction due to triples. Test calculations for bond breaking in HF, F(2), and H(2)O indicate that the noniterative CR-CCSD(T)(L) or CR-CC(2,3) approximation is very competitive with the standard CCSD(T) theory for nondegenerate closed-shell states, while being practically as accurate as the full CC approach with singles, doubles, and triples in the bond-breaking region. Calculations of the activation enthalpy for the thermal isomerizations of cyclopropane involving the trimethylene biradical as a transition state show that the noniterative CR-CCSD(T)(L) approximation is capable of providing activation enthalpies which perfectly agree with experiment.  相似文献   

3.
4.
A generalization of the coupled cluster (CC) singles, doubles, and a hybrid treatment of connected triples [denoted as CCSD(T)-h] [Shen et al., J. Chem. Phys. 132, 114115 (2010)] to the restricted Hartree-Fock (RHF) reference is presented. In this approach, active (or pseudoactive) RHF orbitals are constructed automatically by performing unitary transformations of canonical RHF orbitals so that they spatially mimic the natural orbitals of the unrestricted Hartree-Fock reference. The present RHF-based CCSD(T)-h approach has been applied to study the potential energy surfaces in several typical bond breaking processes and the singlet-triplet gaps in a diradical (HFH)(-1). For all systems under study, the overall performance of CCSD(T)-h is very close to that of the corresponding CCSD(T) (CC singles, doubles, and triples), and much better than that of CCSD(T) (CC singles, doubles, and perturbative triples).  相似文献   

5.
An implementation of the coupled cluster (CC) singles, doubles, and a hybrid treatment of connected triples [denoted as CCSD(T)-h], based on the unrestricted Hartree-Fock (UHF) reference, is presented. Based on the spin-integrated formulation, we have developed a computer program to achieve the automatic derivation and implementation of the CCSD(T)-h approach. The CCSD(T)-h approach computationally scales as the seventh power of the system size, and is affordable for many medium-sized systems. The present approach has been applied to study the equilibrium geometries and harmonic vibrational frequencies in a number of open-shell diatomic molecules and bond breaking potential energy profiles in several open-shell molecules, including CH(3), NH(2), and SiH(2). For all systems under study, the overall performance of the UHF-based CCSD(T)-h approach is very close to that of the corresponding CCSDT (CC singles, doubles, and triples), and much better than that of the UHF-based CCSD(T) (CC singles, doubles, and perturbative triples).  相似文献   

6.
The frozen natural orbital (FNO) coupled-cluster method increases the speed of coupled-cluster (CC) calculations by an order of magnitude with no consequential error along a potential energy surface. This method allows the virtual space of a correlated calculation to be reduced by about half, significantly reducing the time spent performing the coupled-cluster (CC) calculation. This paper reports the derivation and implementation of analytical gradients for FNO-CC, including all orbital relaxation for both noncanonical and semicanonical perturbed orbitals. These derivatives introduce several new orbital relaxation contributions to the CC density matrices. FNO-CCSD(T) and FNO-LambdaCCSD(T) are applied to a test set of equilibrium structures, verifying that these methods are capable of reproducing geometries and vibrational frequencies accurately, as well as energies. Several decomposition pathways of nitroethane are investigated using CCSD(T) and LambdaCCSD(T) with 60% of the FNO virtual orbitals in a cc-pVTZ basis, and find differences on the order of 5 kcalmol with reordering of the transition state energies when compared to B3LYP 6-311 + G(3df, 2p).  相似文献   

7.
The (TiO2)n clusters and their anions for n = 1-4 have been studied with coupled cluster theory [CCSD(T)] and density functional theory (DFT). For n > 1, numerous conformations are located for both the neutral and anionic clusters, and their relative energies are calculated at both the DFT and CCSD(T) levels. The CCSD(T) energies are extrapolated to the complete basis set limit for the monomer and dimer and calculated up to the triple-zeta level for the trimer and tetramer. The adiabatic and vertical electron detachment energies of the anionic clusters to the ground and first excited states of the neutral clusters are calculated at both levels and compared with the experimental results. The comparison allows for the definitive assignment of the ground-state structures of the anionic clusters. Anions of the dimer and tetramer are found to have very closely lying conformations within 2 kcal/mol at the CCSD(T) level, whereas that of the trimer does not. In addition, accurate clustering energies and heats of formation are calculated for the neutral clusters and compared with the available experimental data. Estimates of the titanium-oxygen bond energies show that they are stronger than the group VIB transition metal-oxygen bonds except for tungsten. The atomization energies of these clusters display much stronger basis set dependence than the clustering energies. This allows the calculation of more accurate heats of formation for larger clusters on the basis of calculated clustering energies.  相似文献   

8.
We have proposed a simple strategy for splitting the virtual orbitals with a large basis set into two subgroups (active and inactive) by taking a smaller basis set as an auxiliary basis set. With the split virtual orbitals (SVOs), triple or higher excitations can be partitioned into active and inactive subgroups (according to the number of active virtual orbitals involved), which can be treated with different electron correlation methods. In this work, the coupled cluster (CC) singles, doubles, and a hybrid treatment of connected triples based on the SVO [denoted as SVO-CCSD(T)-h], has been implemented. The present approach has been applied to study the bond breaking potential energy surfaces in three molecules (HF, F(2), and N(2)), and the equilibrium properties in a number of open-shell diatomic molecules. For all systems under study, the SVO-CCSD(T)-h method based on the unrestricted Hartree-Fock (UHF) reference is an excellent approximation to the corresponding CCSDT (CC singles, doubles, and triples), and much better than the UHF-based CCSD(T) (CC singles, doubles, and perturbative triples). On the other hand, the SVO-CCSD(T)-h method based on the restricted HF (RHF) reference can also provide considerable improvement over the RHF-based CCSD(T).  相似文献   

9.
The equilibrium geometries, stability, and isomerisation of pseudohalogen isomers, C(2)N(2)O(2), have been investigated by DFT calculations at the B3LYP level and by ab initio calculations at the CCSD(T) level of theory using the 6-311+G(2d) and cc-pVTZ basis sets, as well as at the CBS-QB3 level. Minimum energy structures and their interconnecting transition states, as well as transition states for bond dissociations have been calculated, and possible isomerisation and decomposition pathways are suggested. Calculations have predicted that four isomers, OCNNCO, ONCCNO, ONCOCN, and ONCNCO are kinetically stable toward unimolecular isomerisation or dissociation at room temperature with the lowest kinetic energy barrier of 209, 232, 159, and 95 kJ mol(-1), respectively (CCSD(T)//B3LYP), and other isomers, like NCONCO, CNONCO, and CNOCNO are unstable. Calculations have also predicted that valence formulations like NCOOCN, CNOOCN, and CNOONC do not represent existing molecules. The gas-phase generation of OCNNCO has been attempted by thermolysing Me(3)SiON(Me(3)SiO)CC(OSiMe(3))NOSiMe(3), synthesised by a novel method from oxalyl chloride and N,O-bis(trimethylsilyl)hydroxylamine; the thermolysis, however, have not produced OCNNCO, but trimethylsilylisocyanate and hexamethyldisiloxane.  相似文献   

10.
A perturbatively truncated version of the reduced multireference coupled-cluster method with singles and doubles and noniterative triples RMR CCSD(T) is described. In the standard RMR CCSD method, the effect of all triples and quadruples that are singles or doubles relative to references spanning a chosen multireference (MR) model space is accounted for via the external corrections based on the MR CISD wave function. In the full version of RMR CCSD(T), the remaining triples are then handled via perturbative corrections as in the standard, single-reference (SR) CCSD(T) method. By using a perturbative threshold in the selection of MR CISD configuration space, we arrive at the truncated version of RMR CCSD(T), in which the dimension of the MR CISD problem is significantly reduced, thus leaving more triples to be treated perturbatively. This significantly reduces the computational cost. We illustrate this approach on the F2 molecule, in which case the computational cost of the truncated version of RMR CCSD(T) is only about 10%-20% higher than that of the standard CCSD(T), while still eliminating the failure of CCSD(T) in the bond breaking region of geometries. To demonstrate the capabilities of the method, we have also used it to examine the structure and binding energy of transition metal complexes Ni(CO)n with n=1, 2, and 4. In particular, Ni(CO)2 is shown to be bent rather than linear, as implied by some earlier studies. The RMR CCSD(T) binding energy differs from the SR CCSD(T) one by 1-2 kcal/mol, while the energy barrier separating the linear and bent structures of Ni(CO)2 is smaller than 1 kcal/mol.  相似文献   

11.
To assess the limits of single-reference coupled-cluster (CC) methods for potential-energy surfaces, several methods have been considered for the inclusion of connected quadruple excitations. Most are based upon the factorized inclusion of the connected quadruple contribution (Qf) [J. Chem. Phys. 108, 9221 (1998)]. We compare the methods for the treatment of potential-energy curves for small molecules. These include CCSD(TQf), where the initial contributions of triple (T) and factorized quadruple excitations are added to coupled-cluster singles (S) and doubles (D), its generalization to CCSD(TQf), where instead of measuring their first contribution from orders in H, it is measured from orders in H=e(-(T1+T2))He(T1+T2); renormalized approximations of both, and CCSD2 defined in [J. Chem. Phys. 115, 2014 (2001)]. We also consider CCSDT, CCSDT(Qf), CCSDTQ, and CCSDTQP for comparison, where T, Q, and P indicate full triple, quadruple, and pentuple excitations, respectively. Illustrations for F2, the double bond breaking in water, and N2 are shown, including effects of quadruples on equilibrium geometries and vibrational frequencies. Despite the fact that no perturbative approximation, as opposed to an iterative approximation, should be able to separate a molecule correctly for a restricted-Hartree-Fock reference function, some of these higher-order approximations have a role to play in developing new, more robust procedures.  相似文献   

12.
The partially linearized (pl), fully size-extensive multireference (MR) coupled-cluster (CC) method, fully accounting for singles (S) and doubles (D) and approximately for a subset of primary higher than doubles, referred to as plMR CCSD, as well as its plMR CCSD(T) version corrected for secondary triples, as described in Part I of this paper [X. Li and J. Paldus, J. Chem. Phys. 128, 144118 (2008)], are applied to the problem of bond breaking in the HF, F2, H2O, and N2 molecules, as well as to the H4 model, using basis sets of a DZ or a cc-pVDZ quality that enable a comparison with the full configuration interaction (FCI) exact energies for a given ab initio model. A comparison of the performance of the plMR CCSD/CCSD(T) approaches with those of the reduced MR (RMR) CCSD/CCSD(T) methods, as well as with the standard single reference (SR) CCSD and CCSD(T) methods, is made in each case. For the H4 model and N2 we also compare our results with the completely renormalized (CR) CC(2,3) method [P. Piecuch and M. W?och, J. Chem. Phys. 123, 224105 (2005)]. An important role of a proper choice of the model space for the MR-type methods is also addressed. The advantages and shortcomings of all these methods are pointed out and discussed, as well as their size-extensivity characteristics, in which case we distinguish supersystems involving noninteracting SR and MR subsystems from those involving only MR-type subsystems. Although the plMR-type approaches render fully size-extensive results, while the RMR CCSD may slightly violate this property, the latter method yields invariably superior results to the plMR CCSD ones and is more easy to apply in highly demanding cases, such as the triple-bond breaking in the nitrogen molecule.  相似文献   

13.
The structural and vibrational properties of the transition state of the N(2)O + X (X = Cl,Br) reactions have been characterized by ab initio methods using density functional theory. We have employed Becke's hybrid functional (B3LYP), and transition state optimizations were performed with 6-31G(d), 6-311G(2d,2p), 6-311+G(3d,2p), and 6-311+G(3df,2p) basis sets. For the chlorine atom reaction the coupled-cluster method (CCSD(T)) with 6-31G(d) basis set was also used. All calculations resulted in transition state structures with a planar cis arrangement of atoms for both reactions. The geometrical parameters of transition states at B3LYP are very similar, and the reaction coordinates involve mainly the breaking of the N-O bond. At CCSD(T)/6-31G(d) level a contribution of the O-Cl forming bond is also observed in the reaction coordinate. In addition, several highly accurate ab initio composite methods of Gaussian-n (G1, G2, G3), their variations (G2(MP2), G3//B3LYP), and complete basis set (CBS-Q, CBS-Q//B3LYP) series of models were applied to compute reaction energetics. All model chemistries predict exothermic reactions. The G3 and G2 methods result in the smallest deviations from experiment, 1.8 and 0 kcal mol(-1), for the enthalpies of reaction for N(2)O reaction with chlorine and bromine, respectively. The G3//B3LYP and G1 methods perform best among the composite methods in predicting energies of the transition state, with a deviation of 1.9 and 3.0 kcal mol(-1), respectively, in the activation energies for the above processes. However, the B3LYP/6-311+G(3df,2p) method gives smaller deviations of 0.4 and -1.0 kcal mol(-1), respectively. The performance of the methodologies applied in predicting transition state energies was analyzed.  相似文献   

14.
The potential energy surfaces (PESs) for both the ground and the excited electronic states of the C(2)B radical are investigated using various multireference (MR) coupled-cluster (CC) approaches. In the ground state case we employ the reduced MR (RMR) CC approach with singles (S) and doubles (D), the RMR CCSD method, as well as its RMR CCSD(T) version corrected for secondary triples, relying on various model spaces and basis sets. The reliability of this approach is also tested against the benchmark full configuration interaction results obtained for a small Dunning-Hay (DH) basis set. The results imply a clear preference for a cyclic structure which, however, breaks the C(2v) symmetry. This symmetry breaking manifests itself strongly at the level of the independent particle model, as represented by the restricted open-shell Hartree-Fock approximation, but the tendency toward symmetry breaking diminishes with the increasing size of the basis set employed as well as with the enhanced account of the correlation effects. It is likely to disappear in the complete basis set limit. The general model space CCSD method is then used to compute vertical excitation energies for a number of excited states as well as the cuts of the PES as the boron atom moves around the C(2) fragment. These results also explain why no symmetry breaking is found when relying on a spin contaminated unrestricted Hartree-Fock reference, as in the UMP2 method.  相似文献   

15.
In this work, theoretical computations for the ground and excited states of BrOOBr have been performed at high-level ab initio molecular orbital theories. The ground-state geometries of BrOOBr in different forms (trans, cis, and twist form) have been optimized at the couple-cluster CCSD(T) level of theory with cc-pVTZ and aug-cc-pVTZ basis sets, which indicates that at CCSD(T)/cc-pVTZ level of theory, the twist form is 4.96 kcal/mol more stable than the trans form and 10.67 kcal/mol more stable than the cis form; at the CCSD(T)/aug-cc-pVTZ basis set the twist form is 4.33 kcal/mol more stable than the trans form and 9.54 kcal/mol more stable than the cis form. The vertical excitation energies and potential-energy curves for the singlet and triplet low-lying excited states of BrOOBr were calculated at both the complete active space self-consistent-field (CASSCF) level of theory and the multireference internally contracted configuration interaction (MRCI) level of theory. The differences of potential-energy curves at CASSCF and MRCI levels of theory are found for the BrOOBr excited states. At CASSCF level of theory, none of the BrOOBr excited states are bound. However, at MRCI level of theory, all the BrOOBr states studied in this work are bound or slightly bound at the Frank-Condon region. In addition, the scalar relativistic effect and the spin-orbital coupling effect on the vertical excitation energies of the electronic states of BrOOBr were estimated.  相似文献   

16.
This work reports the results of high level ab initio calculations of the OC-HCO(+) complex and the SC-HCS(+) complex and their hydrogen migration transition states. Geometry optimizations are performed at the CCSD(T)/aug-cc-pV5Z level of theory. Subsequent frequency calculations are carried out at the CCSD(T)/aug-cc-pVQZ level of theory. Additional geometry optimizations and harmonic frequency calculations for all the species involved in this study have been done with the explicitly correlated CCSD(T)-F12 method with the aug-cc-pVTZ and VTZ-F12 basis set. The geometries, rotational constants, harmonic vibrational frequencies, and energetics of the species involved in the complex are reported. These methods result in accurate computational predictions that have mean deviations for bond lengths, rotational constants, and vibrational frequencies of 0.001 A?, 163 MHz, and 46 cm(-1), respectively. These results provide essential spectroscopic properties for the complexes that can facilitate both laboratory and interstellar observations, and they also provide a comparison between oxygen and sulfur complex observability based on thermodynamic stability.  相似文献   

17.
The geometries, harmonic vibrational frequencies, relative energetics, and enthalpies of formation of (HIO3) isomers have been examined using quantum mechanical methods. At all levels of theory employed, MP2, B3LYP, and CCSD(T), the lowest energy structure is found to be the HOIO2 form, which shows particular stability. The two isomers HOOOI and HOOIO are closely located at the CCSD(T) level of theory. The higher energy structure is HIO3. The interisomerization transition states have been determined, along with the transition states involved in the various pathways of the reaction HO2 + IO.  相似文献   

18.
A benchmark set of 28 medium-sized organic molecules is assembled that covers the most important classes of chromophores including polyenes and other unsaturated aliphatic compounds, aromatic hydrocarbons, heterocycles, carbonyl compounds, and nucleobases. Vertical excitation energies and one-electron properties are computed for the valence excited states of these molecules using both multiconfigurational second-order perturbation theory, CASPT2, and a hierarchy of coupled cluster methods, CC2, CCSD, and CC3. The calculations are done at identical geometries (MP26-31G*) and with the same basis set (TZVP). In most cases, the CC3 results are very close to the CASPT2 results, whereas there are larger deviations with CC2 and CCSD, especially in singlet excited states that are not dominated by single excitations. Statistical evaluations of the calculated vertical excitation energies for 223 states are presented and discussed in order to assess the relative merits of the applied methods. CC2 reproduces the CC3 reference data for the singlets better than CCSD. On the basis of the current computational results and an extensive survey of the literature, we propose best estimates for the energies of 104 singlet and 63 triplet excited states.  相似文献   

19.
The recently developed completely renormalized (CR) coupled-cluster (CC) methods with singles, doubles, and noniterative triples or triples and quadruples [CR-CCSD(T) or CR-CCSD(TQ), respectively], which are based on the method of moments of CC equations (MMCC) [K. Kowalski and P. Piecuch, J. Chem. Phys. 113, 18 (2000)], eliminate the failures of the standard CCSD(T) and CCSD(TQ) methods at larger internuclear separations, but they are not rigorously size extensive. Although the departure from strict size extensivity of the CR-CCSD(T) and CR-CCSD(TQ) methods is small, it is important to examine the possibility of formulating the improved CR-CC methods, which are as effective in breaking chemical bonds as the existing CR-CCSD(T) and CR-CCSD(TQ) approaches, which are as easy to use as the CR-CCSD(T) and CR-CCSD(TQ) methods, and which can be made rigorously size extensive. This may be particularly useful for the applications of CR-CC methods and other MMCC approaches in calculations of potential energy surfaces of large many-electron systems and van der Waals molecules, where the additive separability of energies in the noninteracting limit is very important. In this paper, we propose different types of CR-CC approximations, termed the locally renormalized (LR) CCSD(T) and CCSD(TQ) methods, which become rigorously size extensive if the orbitals are localized on nointeracting fragments. The LR-CCSD(T) and LR-CCSD(TQ) methods rely on the form of the energy expression in terms of the generalized moments of CC equations, derived in this work, termed the numerator-denominator-connected MMCC expansion. The size extensivity and excellent performance of the LR-CCSD(T) and LR-CCSD(TQ) methods are illustrated numerically by showing the results for the dimers of stretched HF and LiH molecules and bond breaking in HF and H2O.  相似文献   

20.
Here we review the basic formalism, implementation details, and performance of two newly developed coupled cluster (CC) methods based on the unrestricted Hartree-Fock (UHF) reference for treating molecules with multireference character. These two approaches can be considered to be approximations to the CC singles, doubles, and triples (CCSDT) method. The key concept of these two approaches is the corresponding orbitals, which are unitary transformations of canonical UHF molecular orbitals so that all spin orbitals are grouped into unique orbital pairs. In one approach called CCSDT(5P), a subset of triple excitations involving up to five-pair indices is included. In another approach called CCSD(T)-h, the contribution of connected triple excitations is treated in a hybrid way. With the concept of active corresponding orbitals, triple excitations can be automatically partitioned into two subsets, and the amplitudes of these two subsets are determined via solving different equations. Both CCSD(T)-h and CCSDT(5P) computationally scale as the seventh power of the system size. A survey of a number of applications demonstrates that CCSD(T)-h is an excellent approximation to the full CCSDT method, and CCSDT(5P) provides a good approximation to CCSDT for single-bond breaking processes. The overall performance of CCSDT(5P) is less accurate than that of CCSD(T)-h, but significantly better than that of the widely used CCSD(T).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号