首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present a surface hopping method for chemical reaction in solution based on diabatic representation, where quantum mechanical time evolution of the vibrational state of the reacting nuclei as well as the reaction-related electronic state of the system are traced simultaneously together with the classical motion of the solvent. The method is effective in describing the system where decoherence between reactant and product states is rapid. The diabatic representation can also give a clear picture for the reaction mechanism, e.g., thermal activation mechanism and a tunneling one. An idea of molecular orbital theory has been applied to evaluate the solvent contribution to the electronic coupling which determines the rate of reactive transition between the reactant and product potential surfaces. We applied the method to a model system which can describe complex chemical reaction of the real system. Two numerical examples are presented in order to demonstrate the applicability of the present method, where the first example traces a chemical reaction proceeded by thermal activation mechanism and the second examines tunneling mechanism mimicking a proton transfer reaction.  相似文献   

2.
Simulating tunneling processes as well as their observation are challenging problems for many areas. In this study, we consider a double-well potential system coupled to a heat bath with a linear-linear (LL) and square-linear (SL) system-bath interactions. The LL interaction leads to longitudinal (T1) and transversal (T2) homogeneous relaxations, whereas the SL interaction leads to the inhomogeneous dephasing (T2*) relaxation in the white noise limit with a rotating wave approximation. We discuss the dynamics of the double-well system under infrared (IR) laser excitations from a Gaussian-Markovian quantum Fokker-Planck equation approach, which was developed by generalizing Kubo's stochastic Liouville equation. Analytical expression of the Green function is obtained for a case of two-state-jump modulation by performing the Fourier-Laplace transformation. We then calculate a two-dimensional infrared signal, which is defined by the four-body correlation function of optical dipole, for various noise correlation time, system-bath coupling parameters, and temperatures. It is shown that the bath-induced vibrational excitation and relaxation dynamics between the tunneling splitting levels can be detected as the isolated off-diagonal peaks in the third-order two-dimensional infrared (2D-IR) spectroscopy for a specific phase matching condition. Furthermore, this spectroscopy also allows us to directly evaluate the rate constants for tunneling reactions, which relates to the coherence between the splitting levels; it can be regarded as a novel technique for measuring chemical reaction rates. We depict the change of reaction rates as a function of system-bath coupling strength and a temperature through the 2D-IR signal.  相似文献   

3.
The analysis of the observed OH (υ = 0, 1) concentration in the laser enhanced reactions of HCl (υ = 1, 2) with O(3P) atoms demonstrates that vibrational energy in excess of the thermal activation energy barrier continues to enhance the reaction rate. This reaction also exhibits a preferential conversion of reactant vibrational excitation into product vibrational excitation.  相似文献   

4.
In this paper we present integral cross sections (in the 5-220 meV collision energy range) and rate constants (in the 100-300 K range of temperature) for the F+HD reaction leading to HF+D and DF+H. The exact quantum reactive scattering calculations were carried out using the hyperquantization algorithm on an improved potential energy surface which incorporates the effects of open shell and fine structure of the fluorine atom in the entrance channel. The results reproduce satisfactorily molecular beam scattering experiments as well as chemical kinetics data for both the HF and DF channels. In particular, the agreement of the rate coefficients and the vibrational branching ratios with experimental measurements is improved with respect to previous studies. At thermal and subthermal energies, the rates are greatly influenced by tunneling through the reaction barrier. Therefore exchange of deuterium is shown to be penalized with respect to exchange of hydrogen, and the isotopic branching exhibits a strong dependence on translational energy. Also, it is found that rotational excitation of the reactant HD molecule enhances the production of HF and decreases the reactivity at the D end, obtaining insight on the reaction stereodynamics.  相似文献   

5.
Chemisorption of hydrogen on Pd{111} is a relatively simple, yet important surface chemical process. By using low-temperature scanning tunneling microscopy, tip-induced motion of adsorbed atomic hydrogen at 4 K has been observed at low coverage. The motion has been ascribed to excitation of vibrational modes that decay into translational modes; vibrational spectroscopy via inelastic electron tunneling corroborates this assignment, and the barrier to hydrogen atom motion has been determined. At higher coverages, tip-induced motion of vacancies in the hydrogen overlayer is observed, and the associated barrier has also been determined.  相似文献   

6.
Quasiclassical trajectory calculations have been performed for the H + H'X(v) → X + HH' abstraction and H + H'X(v) → XH + H' (X = Cl, F) exchange reactions of the vibrationally excited diatomic reactant at a wide collision energy range extending to ultracold temperatures. Vibrational excitation of the reactant increases the abstraction cross sections significantly. If the vibrational excitation is larger than the height of the potential barrier for reaction, the reactive cross sections diverge at very low collision energies, similarly to capture reactions. The divergence is quenched by rotational excitation but returns if the reactant rotates fast. The thermal rate coefficients for vibrationally excited reactants are very large, approach or exceed the gas kinetic limit because of the capture-type divergence at low collision energies. The Arrhenius activation energies assume small negative values at and below room temperature, if the vibrational quantum number is larger than 1 for HCl and larger than 3 for HF. The exchange reaction also exhibits capture-type divergence, but the rate coefficients are larger. Comparisons are presented between classical and quantum mechanical results at low collision energies. At low collision energies the importance of the exchange reaction is enhanced by a roaming atom mechanism, namely, collisions leading to H atom exchange but bypassing the exchange barrier. Such collisions probably have a large role under ultracold conditions. The calculations indicate that for roaming to occur, long-range attractive interaction and small relative kinetic energy in the chemical reaction at the first encounter are necessary, which ensures that the partners can not leave the attractive well. Large orbital angular momentum of the primary products (equivalent to large rotational excitation in a unimolecular reaction) is favorable for roaming.  相似文献   

7.
The effect of conformational relaxation on the quantum dynamics of the hydrogen exchange tunneling is studied in the D2h subspace of formic acid dimer. The fully coupled quantum dynamics in up to six dimensions are derived for potential energy hypersurfaces interpolated directly from hybrid density functional calculations with and without geometry relaxation. For a calculated electronic barrier height of 35.0 kJ/mol the vibrational ground state shows a tunneling splitting of 0.0013 cm(-1). The results support the vibrational assignment of Madeja and Havenith [J. Chem. Phys. 2002, 117, 7162-7168]. Fully coupled ro-vibrational calculations demonstrate the compatibility of experimentally observed inertia defects with in-plane hydrogen exchange tunneling dynamics in formic acid dimer.  相似文献   

8.
The proton-coupled electron transfer reaction catalyzed by soybean lipoxygenase-1 is studied with a multistate continuum theory that represents the transferring hydrogen nucleus as a quantum mechanical wave function. The inner-sphere reorganization energy of the iron cofactor is calculated with density functional theory, and the outer-sphere reorganization energy of the protein is calculated with the frequency-resolved cavity model for conformations obtained with docking simulations. Both classical and quantum mechanical treatments of the proton donor-acceptor vibrational motion are presented. The temperature dependence of the calculated rates and kinetic isotope effects is in agreement with the experimental data. The weak temperature dependence of the rates is due to the relatively small free energy barrier arising from a balance between the reorganization energy and the reaction free energy. The unusually high deuterium kinetic isotope effect of 81 is due to the small overlap of the reactant and product proton vibrational wave functions and the dominance of the lowest energy reactant and product vibronic states in the tunneling process. The temperature dependence of the kinetic isotope effect is strongly influenced by the proton donor-acceptor distance with the dominant contribution to the overall rate. This dominant proton donor-acceptor distance is significantly smaller than the equilibrium donor-acceptor distance and is determined by a balance between the larger coupling and the smaller Boltzmann probability as the distance decreases. Thus, the proton donor-acceptor vibrational motion plays a vital role in decreasing the dominant donor-acceptor distance relative to its equilibrium value to facilitate the proton-coupled electron transfer reaction.  相似文献   

9.
10.
One of the fundamental steps in chemical reaction dynamics involves breaking reactant bonds. This is facilitated by placement of energy into the vibrational degrees of freedom associated with the bond. Here we present a model for vibrational excitation in molecule-surface collisions in which the equilibrium geometry of the (diatomic) molecule varies with distance from the surface. The special feature of this model is that the potential energy surfaces for bound nuclear motion are constructed from quadratic potentials, thus enabling analytic solutions. Comparisons are made between exact results obtained from a purely classical trajectory model and various hybrid models in which the internal vibrational modes are treated quantum mechanically in the harmonic limit.  相似文献   

11.
12.
We calculate quantum tunneling time in the double-well system without perturbation and with symmetry-breaking driven force using the entangled trajectory molecular dynamics method in the present article. Without perturbation, quantum tunneling time decreased with the increase of the energy, and the different contributions of the barrier traversal time and the intrinsic decay time have been shown. The tunneling time dependence on the amplitude and frequency of the symmetry-breaking driven force are present. In the case of weak driven force, tunneling time has a minimum value in the resonant frequency. For strong driven force, chaos brings a huge change to quantum dynamics, tunneling time significantly becomes short. Finally, we directly show the enhancement of quantum tunneling process by chaotic behavior of entangled trajectories and indicate that it was caused by quantum effect.  相似文献   

13.
This paper presents the experimental demonstration of the corpuscular-wave dualism theory. The correlation between the de Broglie wavelength related to the thermal motion and the potential barrier width and height is reported. The stochastic jumps of light atoms (hydrogen, deuterium) between two equilibrium sites A and B (identical geometry) occur via different pathways; one pathway is over the barrier (classical dynamics), and the other one is through the barrier (tunneling). On the over-the-barrier pathway, there are no obstacles for the de Broglie waves, and this pathway exists from high to low temperatures up to 0 K because the thermal energy is subjected to the Maxwell distribution and a certain number of particles owns enough energy for the hopping over the barrier. On the tunneling pathway, the particles pass through the barrier, or they are reflected from the barrier. Only particles with the energy lower than barrier heights are able to perform a tunneling hopping. The de Broglie waves related to these energies are longer than the barrier width. The Schr?dinger equation is applied to calculate the rate constant of tunneling dynamics. The Maxwell distribution of the thermal energy has been taken into account to calculate the tunneling rate constant. The equations for the total spectral density of complex motion derived earlier by us together with the expression for the tunneling rate constant, derived in the present paper, are used in analysis of the temperature dependence of deuteron spin-lattice relaxation of the ammonium ion in the deuterated analogue of ammonium hexachloroplumbate ((ND4)2PbCl6). It has been established that the equation CpTtun = EH (thermal energy equals activation energy), where Cp is the molar heat capacity (temperature-dependent, known from literature), determines directly the low temperature Ttun at which the de Broglie wavelength, lambdadeBroglie, related to the thermal energy, CpT, is equal to the potential barrier width, L. Above Ttun, the lambdadeBroglie wavelength related to the CpT energy is shorter than the potential barrier width and not able to overcome the barrier. The activation energy EH equals 7.5 kJ/mol, and therefore, the Ttun temperature for deuterons in ((ND4)2PbCl6 is 55.7 K. The agreement between the potential barrier width following from the simple geometrical calculations (L = 0.722 A) and de Broglie wavelength at Ttun (L = 0.752 A) is good. The temperature plots of the deuteron correlation times for (ND4)2PbCl6 reveal comparable values of the correlation times of the tunneling, (tau(T)), and over-the-barrier jumps (tau(H)) near 34.8 K. Matsuo, on the basis of the molar heat capacity study, found the first-order phase transition at this temperature.  相似文献   

14.
《Chemical physics》1989,130(1-3):241-255
The quantum-statistical theory of the dynamics of proton transfer in solvated H-bond complexes is formulated. The theory takes into account a H-bond complex interaction with an environmental fast electronic polarisation as well as the coupling to the environment slow degrees of freedom that are connected with vibrational-rotational motion. The equation of motion for a reduced density matrix is derived in the form of a nonlinear generalised master equation. For the dynamics of the proton transfer in a symmetric double-well potential, the kinetic equation for the reactant state probability density has also been derived and solved. Results for different environments and temperatures are presented.  相似文献   

15.
Current theories of unimolecular reaction rates are based on the transition state method which replaces internal reactant dynamics by an assumption of internal equilibrium. The present work is devoted to the development of generalized transition state method which allows effects such as nonergodicity and non-exponential decay to be accounted for within a simple theoretical framework. The derivation is quantum mechanical and not limited by any weak perturbation assumption. An effective hamiltonian is constructed for the reactant dynamics. The loss of amplitude due to reaction is accounted for by a dissipative term in the hamiltonian which is obtained on a phenomenological basis. The diagonalization of the hamiltonian allows the decay of reactant state to be predicted. The decay information is then used to set up a non-markovian master equation which in turn yields the rate coefficient for the reaction. The accuracy of the method is tested in one-dimensional model calculations in which particular attention is paid to decay by quantum mechanical tunneling through a potential barrier.  相似文献   

16.
We discuss the use of tunneling electron current to control and catalyze chemical reactions. Assuming the separation of time scales for electronic and nuclear dynamics we employ Langevin equation for a reaction coordinate. The Langevin equation contains nonconservative current-induced forces and gives nonequilibrium, effective potential energy surface for current-carrying molecular systems. The current-induced forces are computed via Keldysh nonequilibrium Green's functions. Once a nonequilibrium, current-depended potential energy surface is defined, the chemical reaction is modeled as an escape of a Brownian particle from the potential well. We demonstrate that the barrier between the reactant and the product states can be controlled by the bias voltage. When the molecule is asymmetrically coupled to the electrodes, the reaction can be catalyzed or stopped depending on the polarity of the tunneling current.  相似文献   

17.
We develop the instanton theory for calculating the tunneling splitting of excited states. For the case of low vibrational quantum states we derive a canonically invariant formula which is applicable to a multidimensional system of arbitrary Riemannian metric. The effect of multidimensionality in relation to the vibrational excitation is explained in terms of the effective frequencies along the instanton trajectory. The theory is demonstrated to work well by taking HO2 molecule as an example.  相似文献   

18.
The eminent role of metallacyclobutadienes as catalytic intermediates in organic synthesis and polymer chemistry is widely acknowledged. In contrast, their photochemistry is as yet entirely unexplored. Herein, the photo‐induced primary processes of a ferracyclobutadiene tricarbonyl complex in solution are revealed by femtosecond mid‐infrared spectroscopy. The time‐resolved vibrational spectra expose an ultrafast substitution of a basal CO ligand by a solvent molecule in a consecutive dissociation–association mechanism. Following optical excitation, the system relaxes non‐radiatively to the triplet ground state from which a CO is expelled. Since the triplet state is bound with respect to Fe−CO cleavage, the dissociation can only occur from vibrationally excited states. The excitation energy, vibrational relaxation, and intersystem crossing to the singlet ground state control the primary quantum yield for formation of the ferracyclic dicarbonyl–solvent product complex.  相似文献   

19.
For a symmetric triple well potential, driven by the forces associated with the bifurcation diagram of a logistic map, the tunneling and quantum localization are studied using quantum theory of motion and time‐dependent Fourier grid Hamiltonian methods. Detailed analysis reveals that application of only asymmetric or symmetric perturbation results into either quantum localization or over‐barrier transition and no tunneling while application of mixed symmetry perturbation gives either tunneling or over‐barrier transition, depending on temporal nature and initial position of the particle. For bifurcative and chaotic symmetric‐asymmetric perturbation, with truncation of mixed symmetry perturbation, a sudden jump in energy causes a transition from the tunneling phenomenon to the over‐barrier transition. With particle located initially near to either of the minima of the unperturbed well, quantum localization, or over‐barrier transition is observed, depending on types of perturbation used.  相似文献   

20.
We present accurate quantum calculations of the integral cross section and rate constant for the H + O2 --> OH + O combustion reaction on a recently developed ab initio potential energy surface using parallelized time-dependent and Chebyshev wavepacket methods. Partial wave contributions up to J = 70 were computed with full Coriolis coupling, which enabled us to obtain the initial state-specified integral cross sections up to 2.0 eV of the collision energy and thermal rate constants up to 3000 K. The integral cross sections show a large reaction threshold due to the quantum endothermicity of the reaction, and they monotonically increase with the collision energy. As a result, the temperature dependence of the rate constant is of the Arrhenius type. In addition, it was found that reactivity is enhanced by reactant vibrational excitation. The calculated thermal rate constant shows a significant improvement over that obtained on the DMBE IV potential, but it still underestimates the experimental consensus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号